
70

Most webcams are accompanied
by some kind of Windows soft-
ware, which is of no use at all

to Linux users. Luckily, more recent
Linux distributions include Video4Linux,
which gives you simple controls for
many hot-pluggable USB cameras. The
Creative NX Ultra camera I use for my
experiments normally provides video
output and costs about US$ 70. In fact, it
is a waste of the camera’s abilities to use
this camera as a simple webcam, but
then again, it was just lying around in
one of the drawers down at the Perlmeis-

ter lab, so why not use it? The camera
does not need an external power supply,
and it was detected immediately by the
hot-plugging subsystem when I con-
nected it to my PC. The video data typi-
cally goes to /dev/video0. The Linux::
Capture::V4l Perl module from CPAN
locks into the device entry, grabs the
frame data, and lets programmers
change exposure parameters such as
the camera sensitivity on the fly.

Listing 1 shows a simple application
that first sets the camera sensitivity to
40000 before grabbing an image from
the video stream, and then storing the
image on disk as a JPEG photo (Figure
2).

The Camcap module used by single is
shown in Listing 2. It adds an abstrac-
tion layer for access to the video stream.
The constructor in Line 12 defines a few
default parameters, such as the image
width and height, along with the mini-
mum and maximum brightness settings

(br_min, br_max). The code then uses
the Video::Capture::V4l CPAN module to
latch onto the video device, /dev/video0.
If another entity is already listening to
the device, the connection fails.

The cam_bright() method defined in
Line 35 sets the camera sensitivity. It ex-
pects a value between 0 and 65535, calls
the picture() method to retrieve the cam-
era’s picture structure, calls brightness()
to set the sensitivity value defined there,
and then finally calls the set() method to
set the value in the Video4Linux layer.

The capture() method defined in Line
117 optionally accepts a brightness
value, before going on to grab the next
frame from the video stream. The first
available frame carries the number 0, the
next frame is available as 1. Calling the
capture() method of Video::Capture::V4l
in line 128 requests the specified frame
from the video device; the following call
to sync() ensures that the image data got
transferred into the $frame scalar.

Some tests showed that the first frame
to zip past may not be useful, as the
brightness level set for the camera just

Video monitoring with Perl and a webcam

FISHING FOR IMAGES

Webcams are useful for monitoring. Using CPAN modules and cus-

tom-made C code, Perl scripts can automatically adjust the exposure

and fish the most interesting images out of a video camera’s data

stream. BY MICHAEL SCHILLI

Michael Schilli works
as a software devel-
oper at Yahoo!,
Sunnyvale, Califor-
nia. He wrote “Perl
Power” for Addison-
Wesley and can be
contacted at mschilli@perlmeister.
com. His homepage is at
http://perlmeister.com.

T
H

E
 A

U
T

H
O

R

Perl: Controlling a WebcamPROGRAMMING

70 ISSUE 68 JULY 2006 W W W. L I N U X- M A G A Z I N E . C O M

71

prior to grabbing the frame has not been
applied. To work around this, capture al-
ways grabs two frames and discards the
first.

When the sync() method returns, the
$frame variable stores the raw image
data in BGR format. Each pixel is de-
scribed by three consecutive bytes con-
taining the blue, green, and red values
(between 0-255). To generate a format
that normal image manipulation tools
understand from the raw data, the re-
verse command first reverses the byte
string, which gives us the more common
RGB format.

If we now add a P6 header, and this
happens in line 144, and specify the
image width and height, the CPAN Im-
ager module’s read() method can give us
an image in PNM format. The previous
trick to reversing the byte order also re-
versed the pixel order, leaving the image
standing on its head. But this is easily
fixed by calling the flip method, which
uses the dir => "hv" parameter to flip
the image through 180 degrees. Finally,
the capture() method returns an image
as an object of the Imager class, which
will then be processed by the calling
function.

Low-Level Madness
To adjust the camera to the ambient light
level, the calibrate method investigates a
test image, determines its brightness,
and then manipulates the camera sensi-
tivity. If the new image still isn’t perfect
yet, the process continues. But how do
you go about measuring whether an
image is too light or too dark?

Figures 3 and 4 show the distribution
of all RGB values for the pixels in two
different images. The histogram in
Figure 3 is taken from a heavily under-
exposed image, which has a few RGB
values in the lower ranges, but then
abruptly drops off and does not give us
any brighter tones. In contrast, Figure 4
shows a histogram for a normally ex-
posed image, and you can see the even
spread of values between 0 and 255.

To evaluate the brightness of the test
image, we will use a primitive algorithm:
aggregate all RGB values and divide by
three times the number of pixels. If this
gives about half of 256, then the average
color reading point is in mid-range, and
the image is more or less well-balanced.

However, Perl isn’t designed for fast
work like this. A 320 by 240 pixel image,
where each pixel contains a value for the
red, blue, and green channels, contains
230,400 data points. Running through
these takes time, and this kind of num-
ber crunching can be a problem, unless
we eliminate all overhead.

Fortunately, you can extend the Im-
ager module using C, so we can zip
through the data structures at warp
speed and hand the results back to the
Perl script. To do this, we need to create
an Imager-Misc directory in the un-
packed CPAN Imager module directory
structure (we need to use some of its C
header files) by typing the following:

$ cd Imager-0.51
$ h2xs -Axn Imager::Misc

In the emerging Makefile.PL below the
Imager-Misc directory you need to
change the INC => -I. line to INC =>
-I.. to allow the calls to perl Makefile.PL
and make to find the Include files of the
Imager distribution. h2xs also creates a
Misc.xs file for the new speedy C code
and a glue layer (see Listing 3).

Line 18 of Listing 3 shows you the C
code for the brightness() function; the
Perl XS voodoo required to bind this to
the Perl script follows starting in Line 80.
The width of the image passed in is
given in pixels by im->xsize, the height
is in im->ysize. Two for loops iterate
through the pixels, and the i_gpix macro
extracts a pixel’s color values. It returns
an i_color structure in the variable val.
The red value, for example, of a pixel
can then be referenced as val.channel[0].

To build and install the new Imager::
Misc module, just follow the normal
steps: perl Makefile.PL; make; make in-
stall. use Imager::Misc loads the module;
you can then access the new Imager::
Misc::brightness function, which accepts
an Imager image and returns an integer
value to express the brightness of the
image.

The simple algorithm gives us a bright-
ness() value of 7 for the dark picture in
Figure 3, and a value of 125 for the nor-
mally exposed picture shown in the his-
togram in Figure 4.

To set the camera to ambient light, the
calibrate() method from Camcap.pm
first shoots a test image, determines the
return value passed in by the fast bright-
ness function, and compares this return
value with the ideal value of 128. If the
measured value is under par, calibrate()
calls cam_bright() to adjust the camera
sensitivity. If the measured value is

01 #!/usr/bin/perl

02 use strict;

03 use warnings;

04 use Camcap;

05

 06 my $cam = Camcap->new(

07 width => 640,

08 height => 480

09);

10

 11 $cam->cam_bright(42_000);

12 my $img = $cam->capture();

13

 14 $img->write(

15 file => 'office.jpg')

16 or die "Can't write: $!";

Listing 1: single

Figure 1: This is the camera I used for my

experiments: the NX Ultra by Creative.

Figure 2: A small Perl program fished this

image out of the webcam video stream.

PROGRAMMINGPerl: Controlling a Webcam

71ISSUE 68 JULY 2006W W W. L I N U X- M A G A Z I N E . C O M

001 #############################

002 package Camcap;

003 #############################

004 use strict;

005 use warnings;

006 use Video::Capture::V4l;

007 use Imager;

008 use Imager::Misc;

009 use Log::Log4perl qw(:easy);

010

 011 #############################

012 sub new {

013 #############################

014 my ($class, @options) = @_;

015

 016 my $self = {

017 width => 320,

018 height => 240,

019 avg_opt => 128,

020 avg_acc => 20,

021 br_min => 0,

022 br_max => 65535,

023 @options,

024 };

025

 026 $self->{video} =

027 Video::Capture::V4l->new()

028 or LOGDIE

029 "Open video failed: $!";

030

 031 bless $self, $class;

032 }

033

 034 #############################

035 sub cam_bright {

036 #############################

037 my($self, $brightness) = @_;

038

 039 my $pic =

040 $self->{video}->picture();

041 $pic->brightness(

042 $brightness);

043 $pic->set();

044 }

045

 046 #############################

047 sub img_avg {

048 #############################

049 my ($img) = @_;

050

 051 my $br =

052 Imager::Misc::brightness(

053 $img);

054 DEBUG "Brightness: $br";

055 return $br;

056 }

057

 058 #############################

059 sub calibrate {

060 #############################

061 my ($self) = @_;

062

 063 DEBUG "Calibrating";

064

 065 return

066 if img_avg(

067 $self->capture(

068 $self->{br_min}

069)

070) > $self->{avg_opt};

071

 072 return

073 if img_avg(

074 $self->capture(

075 $self->{br_max}

076)

077) < $self->{avg_opt};

078

 079 # Start binary search

080 my ($low, $high) = (

081 $self->{br_min},

082 $self->{br_max}

083);

084

 085 for (

086 my $max = 5 ;

087 $low <= $high && $max ;

088 $max--)

089 {

090 my $try =

091 int(($low + $high) / 2);

092

 093 my $i =

094 $self->capture($try);

095 my $br = img_avg($i);

096

 097 DEBUG

098 "br=$try got avg=$br";

099

 100 return

101 if abs(

102 $br - $self->{avg_opt}) <=

103 $self->{avg_acc};

104

 105 if ($br < $self->{avg_opt})

106 {

107 $low = $try + 1;

108 } else {

109 $high = $try - 1;

110 }

111 }

112 # Nothing found,

113 # use last setting

114 }

115

 116 #############################

117 sub capture {

118 #############################

119 my ($self, $br) = @_;

120

 121 $self->cam_bright($br)

122 if defined $br;

123

 124 my $frame;

125

 126 for my $frameno (0, 1) {

127 $frame =

128 $self->{video} ->capture(

129 $frameno,

130 $self->{width},

131 $self->{height});

132

 133 $self->{video}->sync(

134 $frameno) or LOGDIE

135 "Unable to sync";

136 }

137

 138 my $i = Imager->new();

139 $frame = reverse $frame;

140

 141 $i->read(

142 type => "pnm",

143 data =>

144 "P6\n$self->{width} "

145 . "$self->{height}\n255\n"

146 . $frame

147);

148 $i->flip(dir => "hv");

149 return $i;

150 }

151

 152 1;

Listing 2: Camcap.pm

Perl: Controlling a WebcamPROGRAMMING

72 ISSUE 68 JULY 2006 W W W. L I N U X- M A G A Z I N E . C O M

below the ideal value, that is, if the
image is under-exposed, cam_bright()
sets a higher value for the next test
image.

calibrate() starts by shooting two im-
ages with maximum and minimum cam-
era sensitivity. If the image is two dark
at maximum exposure (or too bright at
minimum exposure), the function will
just keep the current value, as there is
nothing it can do for a better image.

In all other cases, Capcam.pm starts a
binary search for the optimum exposure
between 0 and 65535. If the image is too
dark, the algorithm continues its quest
in the top half of the interval, and if the
image is too bright, it uses the lower
half. If all goes well, the camera should
give you an image with a brightness
value of 128 +/ -20 (fuzzy parameter

avg_acc). Also to avoid delays, the
search terminates after five attempts.

Differences
If you let the webcam run 24x7, you will
end up with an enormous number of im-
ages. But for monitoring purposes you
will only want to keep the images that
have changed considerably when com-
pared with the previous image.

To filter out uninteresting footage,
Misc.xs defines a changed function that
returns the number of RGB values that
have changed between two images. Be-
sides two pointers to i_img structures
(Imager::ImgRaw objects at Perl level), it
expects a diff parameter for the differ-
ence between channel values. If the red
value for one pixel in the first image is
15, and the red value for the same pixel

01 #ifdef __cplusplus

02 extern "C" {

03 #endif

04 #include "EXTERN.h"

05 #include "perl.h"

06 #include "XSUB.h"

07 #include "ppport.h"

08 #ifdef __cplusplus

09 }

10 #endif

11

 12 #include "imext.h"

13 #include "imperl.h"

14

 15 DEFINE_IMAGER_CALLBACKS;

16

 17 /* ======================= */

18 int

19 brightness(i_img *im) {

20 int x, y;

21 i_color val;

22 double sum;

23 int br;

24 int avg;

25

 26 for(x = 0; x < im->xsize;

27 x++) {

28 for(y = 0; y < im->ysize;

29 y++) {

30

 31 i_gpix(im, x, y, &val);

32

 33 br = (val.channel[0] +

34 val.channel[1] +

35 val.channel[2])

36 / 3;

37 sum += br;

38 }

39 }

40

 41 avg = sum /

42 ((int) (im->xsize) *

43 (int) (im->ysize));

44 return avg;

45 }

46

 47 /* ======================= */

48 int

49 changed(i_img *im1,

50 i_img *im2,

51 int diff) {

52 int x, y, z, chan;

53 i_color val1, val2;

54 int diffcount = 0;

55

 56 for(x=0; x < im1->xsize;

57 x++) {

58 for(y=0; y < im1->ysize;

59 y++) {

60

 61 i_gpix(im1, x, y, &val1);

62 i_gpix(im2, x, y, &val2);

63

 64 for(z = 0; z < 3; z++) {

65 if(abs(val1.channel[z]

66 - al2.channel[z])

67 > diff)

68 diffcount++;

69 }

70 }

71 }

72

 73 return diffcount;

74 }

75

 76 MODULE=Imager::Misc
PACKAGE=Imager::Misc

77

 78 PROTOTYPES: ENABLE

79

 80 int

81 brightness(im)

82 Imager::ImgRaw im

83

 84 int

85 changed(im1, im2, diff)

86 Imager::ImgRaw im1

87 Imager::ImgRaw im2

88 int diff

89

 90 BOOT:

91 PERL_INITIALIZE_IMAGER_
CALLBACKS;

Listing 3: Misc.xs

Figure 3: Higher brightness values missing

in the histogram of a heavily under-exposed

photo.

Figure 4: The histogram of a normally

exposed image shows even distribution of

the brightness values.

PROGRAMMINGPerl: Controlling a Webcam

73ISSUE 68 JULY 2006W W W. L I N U X- M A G A Z I N E . C O M

in the second image is 30, the diffcount
score counter is incremented, if a value

of 15 or more is set for the diff parame-
ter. This helps compensate for statistical

deviation that occurs due to CCD chip
noise or natural changes in the ambient
lighting.

The tracker script in Listing 4 runs in
an infinite loop, shooting one picture
after the other but only storing new pic-
tures if Imager::Misc::changed() signals
a major change, caused by 2000 or more
pixels exceeding the trigger threshold. If
the count is below, it just overwrites the
last image in the cache to keep track of
gradual changes.

Stored images end up in a Cache::File-
Cache disc cache and are automatically
deleted after 48 hours. A date key (such
as 2006/03/28-11:21:22) is stored with
the images. To retrieve the last image
from the cache, tracker simply calls get_
keys() cache, which returns all known
keys. The maxstr function provided by
the List::Util module then picks the most
recent date value. And the get() cache
function returns the matching image, ex-
pecting the key as an argument.

01 #!/usr/bin/perl

02 use strict;

03 use warnings;

04 use Camcap;

05 use Imager::Misc;

06 use Log::Log4perl qw(:easy);

07 use Cache::FileCache;

08 use Time::Piece;

09 use List::Util qw(maxstr);

10

 11 my $c =

12 Cache::FileCache->new({

13 namespace => "tracker",

14 auto_purge_interval => 3600,

15 default_expires_in =>

16 48*3600 });

17

 18 Log::Log4perl->easy_init(

19 $DEBUG);

20

 21 my $cam = Camcap->new();

22

 23 while(1) {

24 my $lkey = maxstr grep /\d/,

25 $c->get_keys();

26

 27 if(!$c->get("calibrated")) {

28 $cam->calibrate();

29 $c->set("calibrated",

30 1, 300);

31 my $img = $cam->capture();

32 saveimg($img, $c, $lkey);

33 next;

34 }

35

 36 my $img = $cam->capture();

37

 38 if($lkey) {

39

 40 my $limg = Imager->new();

41 $limg->read(

42 type => "jpeg",

43 data => $c->get($lkey));

44

 45 my $dpix =

46 Imager::Misc::changed(

47 $limg, $img, 80);

48 DEBUG "$dpix pixels
changed";

49

 50 if($dpix >= 2000) {

51 saveimg($img, $c);

52 next;

53 } else {

54 # minor change,

55 # refresh reference

56 saveimg($img, $c, $lkey);

57 }

58 } else {

59 # save first img

60 saveimg($img, $c);

61 }

62 sleep(1);

63 }

64

 65 #############################

66 sub saveimg {

67 #############################

68 my($img, $cache, $date) =@_;

69

 70 if(! $date) {

71 $date = localtime()->

72 strftime(

73 "%Y/%m/%d-%H:%M:%S");

74 }

75

 76 DEBUG "Saving image $date";

77 $img->write(type => "jpeg",

78 data => \my $val) or die;

79

 80 $cache->set($date, $val);

81 }

Listing 4: tracker

Figure 5: You‘ll find Imager release information, as well as bug reports and a wiki, on the

imager page at perl.org.

Perl: Controlling a WebcamPROGRAMMING

74 ISSUE 68 JULY 2006 W W W. L I N U X- M A G A Z I N E . C O M

We want the camera to re-calibrate
every five minutes to account for chang-
ing ambient light. To allow this to hap-
pen, a pseudo entry named calibrated is

stored in the cache and deleted every
300 seconds. If the tracker fails to find
the entry, it recalibrates and writes the
value again.

The cacheprint script picks up images
from the cache created by the tracker. It
then creates JPEG images from the cache
data and stores them on disk in a new
temporary directory. Then cacheprint
calls the montage program from the
Image-Magick toolbox to create mon-
tages that look like contact prints. The
xv viewer displays the thumbnails and
matching date values (Figure 6).

Figure 6 shows a half a day’s worth of
images that had enough changes so that
tracker thought they were worth keep-
ing. The images show the surreal world
of the Perlmeister Studios. At 0:09, the
light in the office goes out, and as of
1:17, all is quiet in the visible part of my
apartment. Gradual changes between
1:17 and 6:45 are just overwritten with
the 01:17:03 timestamp, until finally at
06:45:37 a person stumbling in the dark
changes a significant number of pixels,
causing tracker to register the move-
ment. At 07:07:56 somebody opens the
drapes, and daylight sweeps into the
room. ■

01 #!/usr/bin/perl -w

02 use strict;

03 use Imager;

04 use Cache::FileCache;

05 use Time::Piece;

06 use List::Util qw(maxstr);

07 use Sysadm::Install

08 qw(rmf mkd cd);

09 use File::Temp qw(tempdir);

10

 11 my $dir =

12 tempdir(CLEANUP => 1);

13

 14 my $c =

15 Cache::FileCache

16 ->new({

17 namespace => "tracker" });

18

 19 for my $date (

20 sort $c->get_keys()) {

21

 22 next unless $date =~ /\d/;

23

 24 my $val = $c->get($date);

25 my $img = Imager->new();

26

 27 $img->read(

28 type => "jpeg",

29 data => $val

30);

31

 32 $date =~ s#/#-#g;

33 $img->write(

34 file => "$dir/$date.jpg")

35 or die "Can't write $!";

36 }

37

 38 cd $dir;

39 my $str = "";

40

 41 for (<*.jpg>) {

42 (my $date = $_) =~

43 s/\.jpg//g;

44 $str .= "-label $date $_ ";

45 }

46

 47 ̀montage -tile 6x6 $str
sequence.jpg`;

48 ̀xv $_` for <sequence*>;

Listing 5: cacheprint

[1] Listings for this article:
http:// www. linux-magazine. com/
Magazine/ Downloads/ 68/ Perl

[2] Definition of brightness: http:// en.
wikipedia. org/ wiki/ Brightness

[3] Marc Lehmann, “Capturing Video in
Real Time,” The Perl Journal, 2005/ 02

[4] Perl Imager module website:
http:// imager. perl. org

INFO

Figure 6: The images that tracker decided to keep, as output by the cacheprint script.

PROGRAMMINGPerl: Controlling a Webcam

75ISSUE 68 JULY 2006W W W. L I N U X- M A G A Z I N E . C O M

