
though root shells have nothing to do
with what Adobe Reader is supposed to
be doing.

SELinux and other similar security
systems replace DAC security with a
much safer alternative known as Manda-
tory Access Control (MAC). A MAC sys-
tem lets the system administrator define
policies that provide granular control
over a user’s ability to access resources
and modify permissions. SELinux also
maintains control over the range of privi-
leges assigned to a process. A process is
not allowed to possess privileges it does
not need.

If SELinux is implemented properly,
an intruder who gains access to a Linux
system will be severely limited in what
they can accomplish once they get
inside. As you’ll learn in this article,
SELinux provides a very powerful and
verstatile security framework – if you’re
willing to contend with the complexity

of getting your system properly con-
figured.

Security Context
SELinux uses the security context as the
central access criterion. The context con-
sists of the SELinux user account (not to
be confused with the Unix user), along
with the user’s role and type.

SELinux stores the security context for
files directly on the filesystem, although
this approach only works with Ext 3 and
XFS as of this writing. Patches are avail-
able for Reiser FS, but JFS is not sup-
ported yet.

Calling ls -Z gives you a file’s security
context: Figure 1 shows user_u:object_r:
paper_t. The Unix user and group are
spenneb, whereas SELinux identifies the
user as user_u; the user’s role is object_r,
and the type is paper_t. The suffixes for
these names indicate the context compo-
nent. Processes are also assigned a secu-

SECURITY
 HARDENED

Mandatory Access Control with SELinux

SECURITY
 HARDENED

SELinux pro-

vides a compre-

hensive Mandatory

Access Control system

for Linux, if you are ready

for all the details.

BY RALF SPENNEBERG

SELinux is a security-enhanced
adaptation of the Linux kernel
developed under the auspices of

the US National Security Agency (NSA).
According to the NSA, SELinux works by
enforcing “access control policies that
confine user programs and system serv-
ers to the minimum amount of privilege
they need to do their job.”

The security of an ordinary Linux sys-
tem is based on a concept known as Dis-
cretionary Access Control (DAC). In a
DAC system, a user is granted access to a
resource (such as a file or directory)
based on the user’s credentials, and
users have the discretion to modify per-
missions for any resources they hap-
pen to control. This design gives attack-
ers a means for gaining entry to a sys-
tem. If root launches the Adobe Reader
to access a PDF from an untrusted
source, an attacker could exploit a vul-
nerability to start a root shell, even

SELinuxCOVER STORY

36 ISSUE 69 AUGUST 2006 W W W. L I N U X- M A G A Z I N E . C O M

37

rity context, which you can output by
running ps -Z (see Figure 1).

Deny All
One of the principles of SELinux is that
each process is associated with a do-
main and each object is associated with
a type. SELinux starts off by denying any
kind of access flat out. Even access by
the example_t domain to the example_t
type is prohibited. Every action has to be
explicitly allowed. The policy might look
like this for the emacs_t domain:

allow emacs_t paper_t:file
{create ioctl read getattr U
lock write append setattr};

This allows processes in the emacs_t do-
main to perform the operations in the
curly braces on paper_t type objects. The
:file object class specifies that these ob-
jects must be regular files.

Changing Domains
If a normal user launches the Emacs
editor, the process does not automati-
cally use the emacs_t domain. In fact,
permissions are required to change do-
mains, and the process is automated.
To allow this to happen, a rule first de-
fines an entry point to the new domain
for the Emacs editor binary. The pro-
gram file needs the emacs_exec_t type
(as a filesystem label) and SELinux
needs the following rule:

allow emacs_t emacs_exec_t:U
file entrypoint;

SELinux will now allow emacs_exec_t
type executables to enter the emacs_t
domain when launched. So far so good,
but SELinux still has to allow the caller
to perform this action. As the caller re-
sides within another domain, a domain
change occurs when the process is
started. An allow rule, and a type tran-
sition rule, are needed in order for this
to work:

allow { userdomain } U
emacs_t:process transition;
type_transition { userdomain }U
 emacs_exec_t:process emacs_t;

The allow rule allows all processes be-
longing to a domain on the userdomain
list to launch new processes in the
emacs_t domain. The type transition rule
that follows specifies that the called pro-
cess will be assigned to the emacs_t do-
main, rather than inheriting the caller’s
domain, if the program file is of the
emacs_exec_t type. And this only applies
if the caller belongs to a userdomain.

To allow SELinux to deploy these rules
on a system, all files must be assigned
an appropriate security context in a pro-
cess known as labeling. *.fc or file con-
text files specify which file receives
which label:

/usr/bin/emacs(.*) -- U
system_u:object_r:U
emacs_exec_t

When a user somewhere on the system
creates a file that matches the pattern,
SELinux assigns the specified emacs_
exec_t type context.

Complexity
This example clearly demonstrates the
enormous granularity of SELinux, and

the ensuing complexity. A part-time ad-
ministrator has no chance of keeping
track. An SELinux policy can easily
reach a size of 6MB – rules only, and in
ASCII. Developers have been trying to do
something about the complexity issue
for quite awhile now.

Fedora Core is one of the leading SE-
Linux distributions. Up to version 4, Fe-
dora had 2 policies: Strict and Targeted.
Whereas the Strict policy actually imple-
mented a MAC system for every process
on the Linux system, the Targeted policy
simply inspected a few services that
handle potentially critical data – mainly
network services. The remaining pro-
cesses on Fedora Core would then run in
a special unconfined_t domain that is no
different from a system without SELinux.

Processes in the Unconfined domain
are allowed more or less any kind of ac-
cess, as only the system’s normal DAC
privileges are operational. SELinux’s ap-
proach is similar to the AppArmor ap-
proach in this mode. However, SELinux
on Fedora Core 4 still needs a 2.5MB
ASCII policy in Targeted mode to support
the required levels of granularity.

Management
Their monolithic structure makes poli-
cies difficult to manage. Changes and
additions to the policy always mean
changing the source code, and then re-
building the binary. Of course, this type
of change is for system administrators
only.

To make things easier on system ad-
ministrators, policies can contain Bool-
ean variables whose values can change
at runtime. For example, Fedora Core 4’s
Targeted policy has no less than 95 vari-
ables that define whether SELinux moni-

Figure 1: SELinux assigns all files and processes to a security context. The context and the

policy decide what kind of access is allowed.

Figure 2: audit2allow tells SELinux to analyze audit trails when events have occurred that

infringe against the policy.

COVER STORYSELinux

37ISSUE 69 AUGUST 2006W W W. L I N U X- M A G A Z I N E . C O M

tors a service and how that monitoring
is going to take place. For example, the
httpd_can_network_connect variable
specifies whether the web server is al-
lowed to establish network connections
of its own – to a database server, for ex-
ample. Boolean variables will not let you
delegate individual administrative tasks
to other users.

Reference Policy
The distinction between the Strict and
Targeted policies poses a problem: it is

more or less impossible to exchange
rules between policies. Tresys developed
the SELinux Reference Policy to address
this issue. The SELinux Reference Policy
has many goals, but its major concern is
a high level of modularity. The idea is to
give admins the ability to load, unload,
and replace modules at runtime. To sup-
port communication between modules,
each module defines its own interface.
To improve usability and make modules
easier to understand, each module
comes with its own interface documen-

tation. You can generate both a Strict
policy and a Targeted policy from the ref-
erence policy. Fedora Core 5 was the first
distribution to introduce this new tech-
nology.

Whereas the Targeted policy only has
two modules, base.pp and enableaudit.
pp, the Strict policy comprises no less
than 149 binary modules. Taking depen-
dencies into consideration, the semodule
loads these modules.

New Modules
A typical problem that occurs when
using SELinux, is that of generating a
policy for a new program. Extensions
like this are now possible with binary
modules, and this removes the need to
pass the whole reworked ruleset to SE-
Linux. A module comprises up to three
files:
• modul.fc
• modul.te
• modul.if
The FC file contains the file contexts that
define how SELinux will label individual
files. The TE file contains the type en-
forcement rules; the IF file is new, and
contains the module interface definition
and accompanying documentation. Al-
though administrators can write these
files from scratch, Fedora Core 5 has a
script called policygentool to help sim-
plify the process.

The policy generation tool expects
the system administrator to provide

Figure 3: The SELinux IDE, Slide, provides access to the modular SELinux Reference Policy.

Slide is implemented as an Eclipse plugin.

Although Multi Level Security is one of
SELinux’s core design features, MLS was
tagged as experimental for many
months. The Reference Policy is the
first MLS policy and supports the Bell-
La-Padula model, which was invented in
1973 to help keep military secretes. Basi-
cally, the model assigns scope and capa-
bilities to subjects, whereas objects have
scope and rankings.

The model ensures that an object within
its own scope can only be read by sub-
jects with identical or superior capabili-
ties. Objects can only be written if the
subject has an identical or lesser ranking.
When a person with a higher rank cre-
ates a file, this file can only be read by
persons with identical or superior clear-
ance to prevent sensitive data falling into
the wrong hands. To implement MLS,
the security context has two additional
parameters: MLS Levels from s0 through

s15 and MLS ranges from c0 through
c255.

Multi-Category Security

Since almost nobody needs an MLS de-
sign apart from armed forces and secret
services, the developers added the con-
cept of Multi-Category Security (MCS) to
their reference policy. MCS softens up
the MLS functionality. All objects are as-
signed to MLS level s0. The system ad-
ministrator can then freely select the cat-
egories of other objects. To back up the
numbers with intuitive descriptions, ad-
ministrators can even assign names to
these categories in the setrans.conf file:

s0:c0=Confidential

s0:c1=Development

s0:c2=HumanResources

After you assign names to the catego-
ries, the chcat command understands

the names as well as the categories and
can assign them to files:

chcat -- +Confidential U

/tmp/file.txt

Whereas the file previously had a secu-
rity context of root:object_r:tmp_t:, it
now has a context of root:object_r:tmp_t:
Confidential. The chcat command can
also assign a users to a category. Every
file the user creates from this point on
will have that user’s MCS category.
Users without a category assignment are
not allowed to access the file. Whereas
this function is similar to Posix style
ACLs (Access Control Lists), MCS will
have more capabilities in future. For ex-
ample, a printing system might issue a
warning when printing a specific docu-
ment, depending on the category. An
email client might refuse to send docu-
ments from a specific category.

Multi-Level Security

SELinuxCOVER STORY

38 ISSUE 69 AUGUST 2006 W W W. L I N U X- M A G A Z I N E . C O M

the name of the module to create, along
with the path to the program the module
governs. The tool then goes on to
prompt the admin for a few answers
before creating the configuration files
and the finished module.

If you prefer the option of creating the
module manually from the three files,
you can run checkmodule to build the TE
file, and then use semodule_package to
build the foo.pp module file, which you
can then load by running semodule -i
foo.pp.

Training Mode
Instead of attempting to manually com-
pile the details of a policy, it makes
sense to create rules based on audit mes-
sages logged for denied access. And this
is exactly what the audit2allow com-
mand does; in fact it implements a kind
of training mode. The results are SE-
Linux rules that allow exactly the types
of access that the tool prohibited and
logged.

Sensibly, the audit2allow command
runs in SELinux's permissive mode, in
which the system simply logs policy in-
fringements without denying them. A
version of the audit2allow command,
which has been modified for the refer-
ence policy, also supports direct module
generation Figure 2 shows audit2allow
in action.

If Auditd is not running, SELinux
sends messages to /var/log/messages.
The semodule -i local.pp then loads and
runs the new module. Manual changes
to the TE file are possible, and sensible,

although it is a good idea to check the
results carefully.

MAC by MAC
As of this writing, only the system ad-
ministrator can change and reload SE-
Linux policies. Whereas this was the
only approach the monolithic design of
the older technology supported, the new
Reference Policy with its modular struc-
ture gives admins the ability to assign
different access attributes to policy mod-
ule files.

Thus far, a process with the ability to
load a policy also had the ability to mod-
ify the whole policy. The modular struc-
ture now supports a new approach, for
which Tresys Technology developed an
SELinux Policy Server. Besides the tar-
gets already mentioned, the policy server
looks to achieve two other goals: to sup-
port new objects managed by userspace
applications, including databases and
database tables. Additionally, the policy
server will support an improved infra-
structure for central management of poli-
cies on multiple systems.

The initial preview version already
supports the idea of policies allowing
specific changes to themselves. The de-
velopers introduced the new policycon
command that applies a security context
to indvidual policy modules. It is then
possible to allow your own policy to
change itself. Again, the semodule com-
mand handles this, communicating with
the policy server in userspace to do so.

The programmers still advise against
running a policy server in production en-
vironments, and unfortunately, things
have quietened down on the develop-
ment stakes.

Development
A fairly impressive user and developer
community has grown up around SE-
Linux. The SELinux Symposium [7]
takes place every two years; this year’s
symposium took place in February, with
29 lectures and 5 tutorials on SELinux
over the course of three days. The lec-
ture slides are available from the sympo-
sium’s homepage.

Current development work is focusing
on adding the IPsec frameworks to SE-
Linux. This would allow SELinux to
monitor data traffic on the network.
Some of these developments have found
their way into the 2.6.16 kernel [10].

Many administrators are worried
about introducing vulnerabilities by
using SELinux. The enormous policy,
which is difficult to comprehend in its
entirety, contributes to this feeling of un-
certainty. However, a MAC system like
SELinux is bound to enhance your sys-
tem’s security if you configure it prop-
erly. And remember, SELinux can’t give
a process privileges that it wouldn’t have
without a MAC. SELinux is not solely re-
sponsible for allowing or denying access;
the normal Linux DAC also has to ap-
prove the access type based on legacy
criteria.

We’ll hope that the SELinux develop-
ers will continue working hard on us-
ability. SELinux developers have already
laid the foundations for a more usable
system with more modularization and
the policy server. ■

A number of GUIs are available for SE-
Linux management and administration .
Slide (Figure 3) is the first GUI for the
Reference Policy. Tresys Technology im-
plemented the IDE as an Eclipse plugin
that supports syntax highlighting, wiz-
ards, and auto-completion of predefined
labels in the module interface. The in-
stallation requires the Eclipse SDK 3.1,
the Reference Policy, and the SE Tools.
The easiest way to install Slide is via an
RPM or directly using Eclipse from the
webpage [8].

After the install, you should have a clear-
cut and tidy IDE which has a few weak
points but still makes the job much eas-
ier, despite the early version number of
0.1.0.

IDEs

[1] NSA website on SELinux:
http:// www. nsa. gov/ selinux/

[2] SELinux for distributions:
http:// selinux. sourceforge. net

[3] SELinux Reference Policy:
http:// serefpolicy. sourceforge. net

[4] Tresys: http:// www. tresys. com

[5] SLIDE:
http:// selinux-ide. sourceforge. net

[6] SELinux policy server:
http:// sepolicy-server. sourceforge. net

[7] SELinux Symposium:
http:// www. selinux-symposium. org

[8] SLIDE installation:
http:// www. tresys. com/ files/
eclipse-update/

[9] MCS introduction:
http:// james-morris. livejournal. com/
8228. html

[10] SELinux for IPsec:
http:// marc. theaimsgroup. com/
?l=linux-netdev&m=11323409701113
3&w=2

INFO

Ralf Spenneberg is
a freelance Unix/
Linux trainer, con-
sultant, and author.
Ralf’s business,
OpenSource Train-
ing, offers training
and consultancy
services. Ralf has published a num-
ber of books on the topics of intru-
sion detection and virtual private
networks.

T
H

E
 A

U
T

H
O

R

COVER STORYSELinux

39ISSUE 69 AUGUST 2006W W W. L I N U X- M A G A Z I N E . C O M

