
62

Experts are well aware that the
 traditional PC networking model
wastes valuable disk space with

redundant data storage. Desktop com-
puters typically have one or more local
hard disks, although the operating sys-
tem and the applications that run on the
desktop may be identical throughout the
organization.

An alternative to this traditional ap-
proach is to use centralized data man-
agement with diskless clients. The disk-
less client option assumes fast and reli-
able network connections and powerful
servers.

A typical diskless client downloads
any data through a network filesystem.
This scenario places unnecessary load
on servers and networks. When a server
on the network distributes a filesystem
that the clients do not modify, most of
the functionality associated with the file
system is unused. One interesting alter-
native for better performance with disk-
less clients is to provide a root filesystem
using a network block device rather than

a network-based filesystem such as
NFS.
The starting point in our quest for a
high-performance root filesystem

for the LAN was a pool of 60 Linux-
based diskless clients (Figure 1), which
were deployed at the University of
Freiburg three years ago. The previous

environment, which was used in three
tuition pools, relied on two NFS servers,
with setup and configuration tasks han-
dled at client runlevel start.

Logging In
By the time a user had negotiated the
KDE login, each client had downloaded

Figure 1: The machines in the CIP pool are set up as diskless clients. To avoid overloading the

network at boot time, we dug deep into our box of tricks and replaced the network filesystem

with remote block devices.

You don’t need Samba or NFS to sup-

port a diskless client. A remote block

device can help improve perfor-

mance and efficiency. We'll show

your how.

BY DIRK VON SUCHODOLETZ,

THORSTEN ZITTERELL

BLOCK SCENARIO
A new mission for the network block device

BLOCK SCENARIO

w
w

w
.sxc.h

u
Network Block DevicesSYSADMIN

62 ISSUE 70 SEPTEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

63

up to 350 MBytes from the server, which
would take at least a minute. As you can
imagine, booting 15 machines simulta-
neously was fairly taxing on server re-
sources. To address this problem, we
started a search for potential optimiza-
tions, but we optimized without touch-
ing the server and network hardware.

We soon discovered that the client
boot behavior had a major affect on
performance. Wherever it made sense,
we decided to handle configuration in
the initial ramdisk and parallelize the
steps. We also investigated alternative
network filesystems and network block
devices with a suitable filesystem. A
combination of these two approaches
reduced the volume of data we needed
to transfer over the network from
350MBytes to less than 50, and this, in
turn, slashed boot time by almost half.

Legacy NFS
The Linux kernel doesn’t really mind
where the root filesystem is located: on a
local hard disk, a SCSI RAID drive, a
flash device, or a remote network server.
In the latter case, Linux typically resorts
to the NFS network filesystem. NFS is
widespread and simple to configure, and
it has been part of the kernel for years.
But NFS is starting to show its age: prior
to version 3, there was no security. The
server blindly trusts client-based user
authentication and distinguishes clients
by their IP addresses only.

NFS is RPC-based (Remote Procedure
Call) and uses remote function calls to

handle any kind of access. From the de-
veloper’s point of view, this is an elegant
approach, but one that suffers from seri-
ous overhead, especially if you are han-
dling small files. Users with an NFS
home directory might be able to live
with this, but if you have a root filesys-
tem shared by a larger number of clients,
the numbers really start to tell. The Sys-
tem V boot procedure, with its myriad of
tiny start scripts, is particularly prone to
overhead.

While we were searching for a faster
approach, it became apparent that our

requirements – scalability, performance,
data integrity, and availability – were
contradictory. For example, caching
tends to improve scalability and perfor-
mance while affecting data integrity.
Without additional measures, you can-
not guarantee that the data in the client’s
cache is identical to the data on the
server. And although synchronization
will improve integrity, this again affects
scalability.

SAN and Block Devices
This left us with an escape route via the
lower levels: instead of centralizing the
filesystem, you can remotely control
hard disks at block device level (see the
box titled “Blocks and Files”). This prin-
ciple is popular with Storage Area Net-
works (SAN), which are typically based
on LAN-independent fibre channel fab-
ric. This said, the technology is expen-

Filesystems control access to files; block
devices typically abstract the hardware
(hard disks, for example) and support
block data exchanges (see Figure 2). The
two meet when a normal filesystem is
based on a block device to support file
storage in blocks. A modern operating
system will enhance performance by
caching block transfers in RAM.

The available network filesystems differ
in the file types and sizes they support,
and with respect to access control. For
example, Samba does not support spe-
cial Unix files such as sockets or named
pipes in the default configuration, and
this can trip up some applications and
Linux GUI desktops. Block devices sup-
port the use of arbitrary block-based file-
systems, no matter whether the block
device is mounted locally or is remotely
accessible over a network. This gives
you a far more choice than you get with
network filesystems.

Blocks and Files

Just like with a remote filesystem, a net-
work block device can be exported to
support read-only or read/ write access.
There is a major difference when you
are looking at shared write access to a
resource: network filesystems provide
locking mechanisms or coordinate file
access to prevent damage to files. Net-
work devices put much less effort into
this and are quite happy as long as read
or write access is restricted to individual
blocks. The only protection they provide
is to ensure that block transfers are
atomic.

Block devices are not particularly inter-
ested in whether the blocks actually be-
long to a filesystem – they are blissfully
unaware of overlying data layers and
the way they are organized, and this can
make it difficult to support distributed
use of a network block device with a
normal block-based filesystem. If multi-
ple clients were to attempt to write to
a shared network block device, they
would be unaware of their peers, and
they would destroy each other’s data
structures due to a lack of coordination.
Local caching on the clients makes this
chaos perfect and leaves the filesystems
with unintelligibly trashed data.

This is not a major concern with diskless
operations. As long as nobody attempts
to write to the network block device, any
number of clients can share it. But for
write access you need to prevent a sec-
ond client from mounting a block device
if another client wants to write to it.

No Write Access

Figure 2: Server and client can exchange files and or blocks on multiple levels. The figure

shows the data interpretation, but not the software implementation. The special LUFS (Linux

Userland Filesystem) implementation, for example, can mount an FTP server as a filesystem.

Ext 2 Ext 3
Squash-FS

Cowloop

NBD ISCSIDNBD

Union-FS

Tmp-FS
NFS

Block devices

to server

to server

Buffer Cache

Filesystems

A new mission for the network block device

BLOCK SCENARIO

SYSADMINNetwork Block Devices

63ISSUE 70 SEPTEMBER 2006W W W. L I N U X- M A G A Z I N E . C O M

sive. There is the ISCSI industrial stan-
dard for less money, and the Linux ker-
nel has driver support for it, but ISCSI
overhead is just too much for a normal
desktop.

A cheaper way to avoid the problems
of NFS by operating at the block device
level is through the Linux network block
device (NBD) feature. The mainstream
kernel has had Network Block Device
(NBD) code for four years now. The
module that manages network block de-
vices is fairly simple, leaving integrity
checking of the transferred data to the
underlying TCP layer.

Using NBD
You can run modprobe nbd to tell you if
your kernel has an NBD module config-
ured. You should not see an error mes-
sage. The accompanying userspace tools,
such as /usr/bin/nbd-server, are pro-
vided in a separate package by most dis-
tributions. Version 2.8.4 was current
when this issue went to print; it is avail-
able from [2]. Suse Linux 10.0 still uses
Version 2.7.4, which will do fine for our
purposes.

For initial testing, you might like to
eliminate the possibility of network

problems and run the client and the
server on the same machine. The easiest
way to do this is with a free partition. If
you don’t have one, a container file with
any filesystem will do the trick (Listing
1). We tested Reiser-FS, Ext 2, and XFS
successfully in our lab. Formatting tools
will tell you that the file is not a block
device (Line 8) but you can just ignore
the helpful advice.

In our example, the admin creates a
100MByte file (Lines 1 and 2), adds an
Ext-2 filesystem (Line 6), launches the
NBD server on port 5000 (Line 14), and
mounts the device on the same machine
in Line 15. The choice of port number is
arbitrary; this would let you launch mul-
tiple servers for various containers. The
NBD client needs the kernel module and

expects the IP
address and port
number of the
server followed by
the name of the
local block device.

Remote
To run the client
and the server
on separate ma-

chines, simply replace the 127.0.0.1 ad-
dress in the nbd-client command line
with the server IP. The nbd-server can
export LVM volumes or partitions in-
stead of simple container files. To do
this, just replace the filename with the
device name: nbd-server 5001 /dev/sda4.

The client closes the connection to the
server as follows: nbd-client -d device,
but make sure you unmount the block
device before closing the connection to
the server:

umount /mnt
nbd-client -d /dev/nbd0

As explained in the box titled “Blocks
and Files,” allowing multiple machines
to write to a shared network block de-
vice causes chaos. In many scenarios,
there is no need for this chaos caused
by many devices writing to a shared
block device. Read access is fine for the
root filesystem on a diskless client, a
shared application directory, or a docu-
ment repository.

Read-Only
The -r option launches the block device
server in read-only mode, preventing cli-
ents from modifying the block device. Of
course, this also disqualifies journaling
filesystems.

We were unable to mount Ext 3, Rei-
ser-FS, or XFS via a read-only block de-
vice in our lab. Depending on the filesys-
tem, error messages of varying severity
were issued; Figure 3 shows what Rei-
ser-FS had to say about this. Specifying
the -o ro mount option did not improve
things; journaling filesystems always
want to write their journals. The Squash-
FS [7] and Ext 2 filesystems were fine,
however.

As an alternative, the NBD server sup-
ports a -c option for copy on write (List-
ing 2, Line 1). To support this option, the
server creates a file for each client,

01 hermes:~ # mkdir /exports

02 hermes:~ # dd if=/dev/zero
of=/exports/nbd-export bs=1024
count=100000

03 100000+0 records in

04 100000+0 records out

05 102400000 bytes (102 MB)
copied, 0,987222 seconds, 84
MB/s

06 hermes:~ # mke2fs nbd-export

07 mke2fs 1.38 (30-Jun-2005)

08 /exports/nbd-export is not a
special block device.

09 Continue anyway? (y,n) y

10 Filesystem-Label=

11 OS-Typ: Linux

12 Block size=1024 (log=0)

13 [...]

14 hermes:~ # nbd-server 5000 /
exports/nbd-export

15 hermes:~ # nbd-client
127.0.0.1 5000 /dev/nbd0

16 Negotiation: ..size = 100000KB

17 bs=1024, sz=100000

18 hermes:~ # mount /dev/nbd0 /
mnt

19 hermes:~ # ls /mnt

20 . .. lost+found

21 hermes:~ # df

22 Filesystem 1K blocks
Used Available Used% Mounted
as

23 [...]

24 /dev/nbd0 96828
13 91815 1% /mnt

25 hermes:/ # time dd if=/dev/
zero of=/mnt/text count=8192
bs=1024

26 8192+0

27 8192+0

28 8388608 bytes (8,4 MB) copied,
0,038112 seconds, 220 MB/s

29

30 real 0m0.046s

31 user 0m0.008s

32 sys 0m0.036s

Listing 1: NBD Test

Figure 3: Our attempt to mount Reiser-FS on a read-only block

device failed. The filesystem needs to add entries to the journal.

Unfortunately, shared network block devices can’t be writable.

Network Block DevicesSYSADMIN

64 ISSUE 70 SEPTEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

where it stores that client’s changes.
Line 9 shows an example. When the cli-
ent disconnects, the changes are lost, al-
though the file itself is kept. The devel-
opers themselves say that the -c option’s
performance is not very fast, so you
might prefer a client-side solution such
as Union-FS or the COW module (copy
on write).

Unfortunately, NBD’s security design
is rudimentary at the most. NBD security
is similar to NFS security but far less
flexible. Admins can specify a list of ma-
chines to which the server will grant ac-
cess to the device. NBD totally lacks ad-
vanced features that provide services
such as authentication, integrity check-
ing, or encryption.

Targeted Writing
Unfortunately, diskless clients need to
create or modify files at various posi-
tions on the filesystem at runtime – /etc/
resolv.conf or the various temp directo-
ries, for example. One solution involves
using translucent filesystems such as
Union-FS to support changes via a
superposed ramdisk, however, these
changes are not persistent, and the
system reverts to its original state on
rebooting.

Cowloop (Copy On Write Loopback
Device [1]) is another possible approach
for read-only block devices. Cowloop
makes a block device writable by storing
changes separately in a sparse file (Fig-

ure 4), which again
can reside in a ram-
disk. In comparison
to Union-FS which
needs to copy a
whole file to the writ-
able layer to reflect
even the tiniest of
changes, Cowloop is
far more frugal with
its use of space and
only stores changed
blocks.

Cowloop
After unpacking,
compiling, and in-
stalling the source
code from [1], you
should have a kernel
module and a tool.
You can use Cowloop
in combination with
NBD as shown in the
following:

modprobe cowloop
cowdev -a /dev/nbd0 /tmp/nbd.cow
mkdir /mnt/nbd-rw
mount /dev/cow/0 /mnt/nbd-rw

This example links the network block
device nbd0 with the writable file /tmp/
nbd.cow and mounts the new block de-
vice. Write operations on nbd-rw do not
affect the network block device. If Cow-
loop complains about a missing /dev/
cow/ctl, or /dev/cow/0, the following
commands should help silence those
complaints:

mkdir /dev/cow
mknod /dev/cow/ctl b 241 255
ln -s /dev/cowloop0 /dev/cow/0

After unmounting the combined block
device, cowdev -d /dev/cow/0 will re-
move Cowloop.

In contrast to this approach, Union-FS
runs at a higher filesystem level. Union-
FS stores modified files in an additional
filesystem, making modifications easy to
trace. In fact, you can use standard
Linux tools to search the superposed
filesystem.

Memory Hook
Diskless clients have no local storage
facilities and thus draw all their infor-
mation from the network. Normally, the
bootloader or a kernel parameter tells
the kernel where the root filesystem is.
But if the root filesystem is located some-
where on a LAN, you must provide some
means for initially enabling the network

01 hermes:~ # nbd-server 5000 /
exports/nbd-export -c

02 hermes:~ # nbd-client
127.0.0.1 5000 /dev/nbd0

03 hermes:~ # mount -t xfs /dev/
nbd0 /mnt

04 hermes:~ # ls -al /exports

05 insgesamt 100008

06 drwxr-xr-x 2 root root
60 2006-04-03 12:39 .

07 drwxr-xr-x 23 root root
4096 2006-03-25 21:16 ..

08 -rw-r--r-- 1 root root
102400000 2006-04-03 12:33
nbd-export

09 -rw------- 1 root root
270336 2006-04-03 12:39
nbd-export-127.0.0.1-7812.
diff

Listing 2: Copy on Write

Name Explanation
NBD The Network Block Device is the predecessor of all Linux network block devices. At

present, there is one active developer and a mailing list with a reasonable volume of
traffic. [2]

ANBD Another Network Block Device is a compatible NBD extension from 2003. It supports
multithreading and promises better error messages than its predecessor. [5]

ENBD The Enhanced Network Block Device is being pushed along by one active developer;
there is a mailing list that sees a couple of messages a month. ENBD extends NBD
adding an automatic restart if the connection is lost, authentication, and support for
removable media. [3]

DNBD The Distributed Network Block Device uses UDP as its transport protocol, and thus
supports multicasting, client-side caching, and server redundancy. It only supports
RO exports. [6]

GNBD The Global Network Block Device is the basis for GFS (the Global Filesystem). [4]

Table 1: NBD Variants

Figure 4: The Cowloop block device (top) draws on two resources:

a write-only device (left) is the basis, and any changed blocks are

stored in a separate file (right). The content of the original block

device remains unchanged.

Cowloop

Block device

Read only

Block device

Writable file

(Sparse file)

Read Read and write

Filesystem

Network Block DevicesSYSADMIN

66 ISSUE 70 SEPTEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

�����������������������
���������������������

���������������������������

interfaces and the IP configuration, both
of which normally require a working
root filesystem.

Three possible approaches to the prob-
lem of providing a root filesystem for en-
abling the initial IP configuration are as
follows:
• Kernel root over NFS – Very early ver-

sions of Linux were capable of sup-
porting “kernel root over NFS,” which
involves mounting the root filesystem
directly via NFS. However, the kernel
root over NSF option assumes that all
the required components are built into
the kernel, including the settings for
the network card and for NFS, and
let’s not forget IP auto-configuration,
which assumes a working DHCP cli-
ent. Problems occur when you change
the NIC or need to patch the driver. In
both cases, you would need to rebuild
the whole kernel.

• Initial ramdisk – An initial ramdisk is
technically a block device in RAM.
The ramdisk has a formatted filesys-
tem with all the tools, scripts, and
modules required for the setup to the
point where the root filesystem is
mounted. The initial ramdisk ap-
proach has its drawbacks, such as the
effort involved in creating the initial
ramdisk, overhead due to the block
device and filesystem, and the com-
plex transition from the small root file-
system on the initial ramdisk to the
newly mounted target root filesystem.
pivot_root handles the transition, and

freeramdisk releases the ramdisk
memory after the switch has occurred.

• Early userspace – A recent develop-
ment, dubbed early userspace looks
likely to replace both kernel root over
NFS and the initial ramdisk approach
in the not-too-distant future. Initram-
FS is a set of special kernel structures
that map to a standardized root file-
system that can either be built into
the kernel as Temp-FS (in a similar
approach to the initial ramdisk) or
kept and loaded separately as a CPIO
archive.

Linux kernel 2.6.15 or newer no longer
uses pivot_root to switch to the target
root filesystem. Instead of using pivot_
root, you can simply redirect the mount-
point to /. A tool titled run-init (located
in klibc) deletes the data formerly stored
at this point.

Alternatives
In addition to NBD, a number of other
free implementations of network block
devices are also available, such as ENBD
[3], GNBD [4], or ANBD [5] (see Table
1). These block device drivers are not
part of the kernel as of this writing, and
most distributions do not include these
drivers.

Although the installation is more
complex, as you need to build from the
source code, ENBD does support error
handling, automatic re-connect if a con-
nection fails, multiple channels, and
more.

Going Wireless
DNBD [6] (Distributed Network Block
Device) is specially designed for diskless
operations on wireless networks. In this
scenario, clients associate with an access
point and share frequencies. Only one
client will transmit at any time, a fact
that is complicated by the restricted
bandwidth of 54 Mbps with today’s IEEE
standards 802.11b/ a/ g. As all the clients
share the network medium, the available
data rate is further reduced by each ad-
ditional device that attempts to boot si-
multaneously.

DNBD attempts to minimize the vol-
ume of data as much as possible, while
at the same time leveraging the abilities
of the wireless network. To achieve this
aim, DNBD does without locking mecha-
nisms and only supports read access.
Additionally, DNBD data traffic is visible
to all the clients attached to the network
(Figure 6), and the clients cache every
single block the server transmits, no
matter which client it was intended for.
After all, it is likely that the other clients
will need the block sometime.

Although the shared medium in a
wireless network principally allows
clients to eavesdrop on other clients’
conversations, not all wireless cards
support promiscuous or monitoring
mode. To overcome this, DNBD uses
IP multicasting to address a group of
clients simultaneously. To allow this
to happen, DNBD relies on the connec-
tionless UDP protocol. DNBD handles
lost packets and other communication
problems itself. It uses IP multicast ad-
dresses in the 224.0.0.0/ 4 network
range, although 239.0.0.0/ 8 is recom-
mended for your experiments.

Before a DNBD client can access a net-
work block device, it first attempts to
discover a server by sending a special
packet to a defined multicast address.
The server response includes informa-
tion about the existing block device,
which the clients can use for configura-
tion purposes. Clients can then request
blocks. DNBD servers can be replicated
in high availability scenarios. Clients dis-
cover servers automatically; they contin-
ually collect statistical data to be able to
choose the server with the lowest re-
sponse time.

Meaningful caching always assumes
locality properties. Clients need the abil-

Figure 5: A combination of the techniques discussed in this article is possible. Block devices

mostly have block-based filesystems; the exceptions are Cowloop or Union-FS, which provide

a new writable layer based on block devices or filesystems.

Ext 2 Ext 3
Squash-FS

Cowloop

NBD ISCSIDNBD

Union-FS

Tmp-FS
NFS

Block devices

to server

to server

Buffer Cache

Filesystems

Network Block DevicesSYSADMIN

68 ISSUE 70 SEPTEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

Signifi cant

Savings

 Very Easy

Renewal

Money Back

Guarantee

✓

✓

✓

WWW.LINUX-MAGAZINE.COM/SUBS

SUBSCRIBE 1-2-3DVD SUBSCRIPTION
12 issues including monthly DVD

DELIVERY TO

United Kingdom £ 49.90

Europe (except UK) EUR 79.90

Americas, Australasia,
Rest of World - SAL* US$ 94.90

Americas, Australasia,
Rest of World - Airmail** US$ 109.90

STANDARD SUBSCRIPTION
12 issues, no DVD

DELIVERY TO

United Kingdom £ 39.90

Europe (except UK) EUR 64.90

Americas, Australasia,
Rest of World - SAL* US$ 74.90

Americas, Australasia,
Rest of World - Airmail** US$ 84.90

*SAL: roughly 4 weeks delivery
**Airmail: roughly 1 week delivery
Terms & conditions: www.linux-magazine.com/terms

1
CHOOSE YOUR SUBSCRIPTION
Check for your preferred subscription variant from the list
on the left.

2
HAVE YOUR DETAILS AT HAND
Make sure you have all details including credit card details
at hand. Linux Magazine accepts payments by Visa and
Mastercard.

3
GO ONLINE
Point your browser to www.linux-magazine.com/subs to
complete the online form.

“Subscribe now!”

ORDER NOW:

lmi_subs_06_05.indd 4 24.05.2006 17:12:06 Uhr

ity to access the same blocks for a lim-
ited period of time to benefit from this
approach. These conditions apply when
a large number of diskless clients boot
simultaneously on a wireless network.
But it also works for multimedia content:
multiple clients can play a DVD over a
WLAN, and the cache will still work if
replaying is time-shifted.

The DNBD project page includes an
installation Howto that describes instal-
ling DNBD via Subversion. You need to
have and configure the kernel sources or
headers: you may need to modify the
path to the kernel in kernel/Makefile.
Just like other network block devices,
DNBD has some trouble with various
combinations of I/ O schedulers with
filesystems, especially in diskless ope-
rations.

Although PXE Linux (Pre-boot Execu-
tion Environment) [8] and Etherboot [9]
were introduced to support booting PCs
over Ethernet, a standard for booting
over a wireless LAN has not been forth-
coming. Instead of using the ether to
send the kernel and the ramdisk to a ma-
chine, USB sticks or compact flash cards
attached to the IDE port are useful ker-
nel carriers. And let's not forget that init
on the Initram-FS is assigned the addi-
tional task of setting the WLAN parame-
ters.

Well Blocked
NFS causes considerable overhead, a big
hindrance if you are dealing with small

files. More specifically, the typical run-
level, system setup, and admin scripts
on a Linux system make life difficult for
NFS. And the situation is aggravated by
the new tricks that modern distributions
get up to with filesystem monitors and
other components generating a steady
flow of NFS data.

Network block devices work better
with the internal kernel cache, and an
inactive system will thus generate almost
no network traffic. On opening a file,
Linux only reads the block once to ascer-
tain the permissions, owner, or last
changed date, and to pick up a file han-
dle. NFS needs a whole bunch of RPC
calls to do this.

NFS operations can also be optimized.
Letting the typical setup and configura-
tion routines run in an initial ramdisk
will reduce the gap between NFS and the
block device. Using the compact Squash-
FS [7] is an interesting option: in read-
only scenarios, precompressing the file-
system can reduce network traffic and
put the block caches to more efficient
use.

Using Union-FS or Cowloop has a
marked effect on performance. The
latter is restricted to use with a block
device that has a writable filesystem.
Union-FS is useful in any scenario and
will also help reduce traffic. Addition-
ally, Union-FS helps to reduce the load
on the expensive Temp-FS in RAM, espe-
cially with regard to typically small con-
figuration files.

High availability is difficult to achieve
with NFS. DNBD specializes in high
availability solutions, proving far more
accomplished at switching transparently
– from the client’s point of view – to al-
ternative servers. System administrators
can even dynamically add and remove
servers from the network without the
users even noticing the change, provid-
ing an elegant workaround for a poten-
tially disastrous single point of failure if
a server crashes.

Specialist
Linux network block devices were not
designed to send the traditional network
filesystem into retirement, but block
devices definitely provide an interesting
option for scenarios that feature multiple
diskless clients. The techniques de-
scribed in this article will help you get
started with providing fast and reliable
file service to the diskless clients on your
own network. ■

[1] Cowloop:
http:// www. atconsultancy. nl/ cowloop/

[2] NBD (Network Block Device):
http:// nbd. sourceforge. net

[3] ENBD (Enhanced Network Block De-
vice): http:// www. it. uc3m. es/ ptb/ nbd/

[4] GNBD (Global Network Block Device):
http:// sources. redhat. com/ cluster/
gnbd/

[5] ANBD (Another Network Block De-
vice): http:// www. aros. net/ ~ldl/ anbd/

[6] DNBD (Distributed Network Block De-
vice): http:// lp-srv02a. ruf. uni-freiburg.
de/ trac/ dnbd/

[7] Squash-FS:
http:// squashfs. sourceforge. net

[8] PXE-Linux:
http:// syslinux. zytor. com/ pxe. php

[9] Etherboot:
http:// etherboot. sourceforge. net

INFO

Thorsten Zitterell works for the Op-
erating System Department at the
University of Freiburg where he re-
searches into realtime operating
systems in embedded microsys-
tems.

Dirk von Suchodoletz is an assistant
at the Department of Communica-
tion Systems and constantly on the
lookout for intelligent designs to
support diskless clients on Linux.

T
H

E
 A

U
T

H
O

R
S

Figure 6: Distributed NBD is best-suited to wireless networks. When a computer requests a

bloc, the server multicasts the block to all clients. This saves time and bandwidth if the next

client needs the same block.

Client cache

Client cache

Client cache

Network Block DevicesSYSADMIN

70 ISSUE 70 SEPTEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

