
The shell is the command line in-
terpreter that interfaces between
the user and the system. Among

other things it interprets commands,
wildcards and variables, links com-
mands, and passes program output in to
other tools or to files. Besides the Bourne
Shell (Sh), Korn Shell (Ksh), C Shell
(Csh), and Z Shell (Zsh), the Bourne
Again Shell, or Bash for short, plays a
prominent role on Unix-style systems –
it has long established itself as the stan-
dard shell on Linux. Working with Bash
is a lot more fun if you modify the
prompt to suit your personal prefer-
ences, if you are familiar with the many
keyboard shortcuts, and if you add more
functionality by defining your own
aliases and environmental variables.

Attention!
Commands are typically entered at the
shell prompt. A typical prompt looks like
this:

huhn@huhnix:~>

The prompt tells you your user ID, the
name of the computer you are working
on, and the current working directory
(this is the home directory for the cur-
rent user in our example, denoted by the
tilde character). If you are working as
the system administrator, root, the
prompt will look slightly different – on
most systems you can tell you are root
by the pound sign in the prompt (#):

huhnix:~ #

Users can modify the prompt to display
the date and time, the computer uptime,
or to use different colors – a few steps
are all it takes to set up your individual
working environment. The environmen-
tal variable responsible for the appear-
ance of the prompt is PS1 (see the “Ev-
erything is Variable” box). If you would
like to display the current time (in 24-

A few basic tricks can liven up the command line and add a dash of

color to your console. BY HEIKE JURZIK

Bash tricks

SHELL POLISHING

w
w

w
.p

h
oto

ca
se.co

m

hour format) in front of the user and
computer names, followed by the cur-
rent working directory, you can assign
the variable temporarily by doing this:

$ export PS1="[\t]U
\u@\h:\w> "
[19:11:06] huhn@huhnix:~>

The escape sequences used here are \t
(time in 24-hour format), \u (username
of the logged in user), \h (hostname up
to the first dot) and \w (current working
directory). Special escape sequences
give you the ability to color the prompt,
assigning green to a normal user prompt,
and red to the administrator’s prompt,
for example.

The Bash manpage has a full list of es-
cape sequences; and you might also like
to check out the Bash Prompt Howto [1].

Good Memory
Bash has a good memory, storing user
input in the history (a file called
~/.bash_history), and letting users recy-
cle commands on screen. Pressing the
[Up arrow] key displays the last com-

LINUXUSERCommand Line

87ISSUE 70 SEPTEMBER 2006W W W. L I N U X- M A G A Z I N E . C O M

Type the command (or part of
the command) you are look-
ing for at the colon. Bash will
complete commands while
you are typing so that just a
few letters might locate the
command you are looking for.
To run a command you have
found using this approach,
just press Enter. Alternatively,
keep pressing [Ctrl]+ [R]
until you find what you are
looking for. Pressing [Esc] lets
you modify the command be-
fore running it.

Context
The functions we have
looked at thus far help you

find commands, but taken completely
out of context. To display more complex
processes on screen, you can either view
the history file (~/.bash_history), or run
the shell builtin fc (“Fix Command”). In
combination with the -l flag, this tool
outputs the last 17 commands by de-
fault. You can add a number to change
the default. For example, fc -l -5 outputs
the last five commands.

The script tool provides an alternative
approach to logging a shell session. You
could type script MyLogfile before
launching into an extended shell hack,
to record any commands you enter and
the output they create. You can quit the
practical logger by pressing [Ctrl]+[D].

Bash Configuration Files
Bash comes with a collection of start
files that modify the behavior of the

mand to be typed on your screen. Press-
ing the key multiple times takes you
farther back in time, and pressing the
[Down arrow] key takes you closer to
the present day. You can modify com-
mands that you recycle in this way, and
run them again by pressing Enter.

Of course, Bash’s memory is only as
good as you tell it to be in the HISTSIZE
environmental variable (see the “Every-
thing is Variable” box). You can ask the
shell to tell you how many slots it has
reserved for commands:

$ echo $HISTSIZE
500

When the shell hits this threshold, the
commands at the top of the list start to
disappear to make way for new ones.
To avoid wearing out your [Up arrow]
key, Bash includes a search function. If
you press the keyboard shortcut [Ctrl-R]
or [Ctrl-S] (see the “Bash Keyboard
Shortcuts” box), you can search for-
wards or backwards through the history
for a command. The prompt changes to
reflect this, for example, pressing [Ctrl-
R] puts the following prompt on your
screen:

(reverse-i-search)`':

shell (and other programs). To add ver-
satility to this chaos, most distributions
do their own thing here, and assign dif-
ferent priorities to configuration files, or
include yet more files.

Using SSH to log in at a virtual con-
sole launches a login shell, which is
prefaced by a minus sign in the process
list:

$ ps auxwww | grep bash
huhnix 3778 0.0 0.3 3056U
1652 tty1 Ss+ May28 0:00U
-bash
huhnix 4193 0.0 0.3 3068U
1672 pts/1 Ss May28 0:00U
/bin/bash

The login shell first checks the user’s
home directory for a ~/.bash_profile.
If this file is missing, bash looks for
~/.bash_login, and then for /etc/profile
or ~/.profile.

Interactive Shells
In addition to this, there are interactive
shells – such as the ones launched
from within other shells. These include
Xterms or other console programs on
graphical user interfaces. Preferences
for these shells are stored in the private
~/.bashrc, or in the system global /etc/
bash.bashrc file, where you also add
the alias definitions and environmental
variables discussed in this article.

Whenever you modify your own
~/.bashrc, you either need to launch a
new shell, or enter source ~/.bashrc to
parse the changes. You can shorten the
command by entering ~/.bashrc.

The alias builtin is an-
other practical feature that
lets users define commands
they use regularly, along
with their typical choice of
options, and assign a
shorter and more intuitive
name to the whole kitten
caboodle. Most distri-
butions define a few de-
fault aliases – to find out
which aliases your version
of Bash knows, type the
alias command at the
prompt:

$ alias
alias ls='ls U
--color=auto'

Builtin: Builtins are not independent ex-
ecutables, but integrated shell com-
mands. Builtins do not have their own
manpage, but are typically described in
the Bash documentation (man bash).

GLOSSARY

Figure 1: Everything is variable – “env” outputs a com-

plete list of Bash environmental variables.

Figure 2: Environmental variables give users the ability to

modify the behavior of Bash and many other programs.

Command LineLINUXUSER

88 ISSUE 70 SEPTEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

To define an alias for the current shell
session, just type the alias command,
followed by the name for the new short-
cut, an equals sign, and the command
(in quotes), as in:

alias ll='ls -l'

The unalias command lets you drop any
shortcuts you no longer need. For exam-

ple, unalias ll would ditch the alias we
just defined. To make an alias persistent,
you need to add the definition to your
~/.bashrc, and parse the file.

Everything is Variable
Environmental variables let you extend
the shell’s feature scope, and modify the
behavior of certain other programs. The
system comes with a set of default vari-

ables, such as the HIST-
SIZE example (in the
“Good Memory” section).
You can use the echo com-
mand to output the value
of the variable, remember-
ing to preface the variable
with a dollar sign:

echo $HISTSIZE

If you are interested in a
complete list of all Bash
environmental variables,
you can type env at the
command line to output
the list (Figure 1).

You can run the export command to
set a variable. For example, if you want
to run a program in a different language
just this once, temporarily set the LC_
ALL variable, and add the executable
name after a blank. The

LC_ALL=fr_FR firefox

command would launch the popular
browser in French for a change. You
can also use the unset command to
disable a variable set for the current
shell, as in:

unset LS_COLORS

To set a variable persistently, add the
export command to ~/.bashrc. Figure 2
shows a commented Bash setup file with
various examples of useful variables. ■

[1] Bash Prompt HOWTO:
http:// www. tldp. org/ HOWTO/
Bash-Prompt-HOWTO/

INFO

[Ctrl-A] Go back to the start of the input.
[Ctrl-E] Jump to the end of the input.
[Esc-B] Go back one word.
[Esc-F] Go forward one word.
[Ctrl-B] Go back one character.
[Ctrl-F] Go forward one character.
[Ctrl-K] Delete from the cursor position to the end of

the input.
[Ctrl-U] Delete from the cursor position to the start of

the line.
[Ctrl-W] Delete the word to the left of the cursor.
[Ctrl-T] Swap the two characters to the left and below

the cursor.
[Esc-T] Swap the two previous words.
[Ctrl-L] Clear the content of the terminal window.

Table 1: Bash Keyboard Shortcuts

advertisement

LINUXUSERCommand Line

