
34

If you remember the days when com-
puters connected to the Internet
through telephone lines, you might

be wondering whether it is possible to
use an Internet-enabled cellphone or
PDA as a wireless Internet connection
for a roaming laptop computer. This arti-
cle describes a technique for connecting
a Linux portable computer to the Inter-
net through a Bluetooth connection to a
mobile phone. Of course, this procedure
requires a mobile phone service plan
that comes with some form of Internet
connectivity.

The example configuration described
in this article assumes Internet access
through General Packet Radio Service
(GPRS), a mobile networking architec-
ture supported by many wireless provid-
ers. A similar approach may also work
for other service types. If your service
plan provides Internet access through
an alternative method, consult your
 provider for details and adapt the proce-

dures described in this article for your
own environment.

Bluetooth Adapter
Before you even start to configure
modem emulation for the cellphone con-
nection, you have to make sure the Blue-
tooth adapter on your computer is work-
ing under Linux. The task of bringing up
the Bluetooth adapter is fairly uncompli-

cated with current versions of the Linux
kernel, provided all Bluetooth-related
kernel options are activated. Make sure
you have the bluez-utils package in-
stalled, and plug in the adapter. Run the
Bluetooth hci daemon if it is not already
running,

sudo U
/etc/init.d/bluetooth start

Using your mobile phone as a wireless modem

LAP CONNECTION

If your mobile phone contract includes GPRS mobile Internet service,

you can use a Bluetooth phone as a wireless modem for your Linux

portable computer. BY KLAUS KNOPPER

Bluetooth with GPRSCOVER STORY

34 ISSUE 80 JULY 2007 W W W. L I N U X- M A G A Z I N E . C O M

01 knopper@Koffer:~$ dmesg | tail

02 usb 1-2: configuration #1
chosen from 1 choice

03 Bluetooth: HCI USB driver ver
2.9

04 usbcore: registered new
interface driver hci_usb

05 usb 1-2: USB disconnect,
address 2

06 usb 1-2: new full speed USB

device using uhci_hcd and
address 3

07 usb 1-2: configuration #1
chosen from 2 choices

08 Bluetooth: BlueFRITZ! USB
driver ver 1.1

09 bfusb_probe: Firmware request
failed

10 bfusb: probe of 1-2:1.0
failed with error -5

Listing 1: dmesg | tail output

35

or if you have an older Debian:

sudo U
/etc/init.d/bluez-utils start

If the Bluetooth daemon is present,
the adapter will appear when you enter
hcitool dev:

knopper@Koffer:~$ hcitool dev
Devices:
 hci0 00:03:0D:00:71:8E

If this command is successful, just pro-
ceed to the next section and get started
with configuring modem emulation.

Unfortunately, some Bluetooth adapt-
ers, such as the AVM BlueFritz, don’t
come with preloaded firmware. You will
notice this from the output of the com-
mand dmesg | tail shown in Listing 1.

My preferred procedure is to use a
“normal” Bluetooth adapter with firm-
ware inside; however, you can get the

AVM Bluetooth adapter to work by just
copying the firmware file bfubase.frm
from the Internet or the driver CD. The
following procedure is suggested in the
Gentoo AVM adapter HOWTO:

root@Koffer# cd U
/usr/lib/hotplug/firmware
root@Koffer# wget U
ftp://ftp.in-berlin.de/pubU
/capi4linux/firmware/U
bluefusb/3-17-53/bfubase.frm

After replugging the adapter, dmesg
should report:

Bluetooth: BlueFRITZ! U
USB loading firmware
Bluetooth: BlueFRITZ! U
USB device ready

Modem Emulation
The other part of this Bluetooth GPRS
configuration is activating the serial line

or modem emulation of the Bluetooth
stack. Your cellphone now will act very
much like a regular modem. For this,
you need to create a connection between
your Bluetooth adapter and the cell-
phone, which means you have to define
how the connection is made between the
adapter and the phone.

You will need to find out which hard-
ware address your cellphone uses. If the
cellphone's address is not listed any-
where in the configuration menu of the
cellphone, switch on “Bluetooth visibil-
ity” for a brief time so you’ll be able
to scan the Bluetooth environment from
your computer with hcitool:

root@Koffer# hcitool scan U
Scanning … U
00:01:E3:07:3E:1A Blauer Klaus

What looks like a MAC address for a
LAN adapter is the hardware address
you need for setting up a “serial line” to
issue modem-like commands.

The text behind the address in the
hcitool output is actually the Bluetooth
name, which you set in your cellphone’s
configuration menu.

After finding out the Bluetooth hard-
ware address, switch to Enabled with No
Broadcast Bluetooth mode to keep peo-
ple from bluejacking your cellphone.
The Hidden mode is sufficient if you
know the cellphone’s address.

Next, edit /etc/bluetooth/rfcomm.conf
and add this configuration section:

rfcomm0 {
 bind yes;
 device 00:01:E3:07:3E:1A;
 channel 1;
 comment "Blauer Klaus";
}

Using your mobile phone as a wireless modem

LAP CONNECTION

COVER STORYBluetooth with GPRS

35ISSUE 80 JULY 2007W W W. L I N U X- M A G A Z I N E . C O M

01 TIMEOUT 120

02 ABORT BUSY

03 ABORT "NO CARRIER"

04 ABORT ERROR

05 "" 'ATE1'

06 OK AT+CGDCONT=1,"IP","interne
t"

07 OK ATD*99***1#

08 CONNECT \d\c

Listing 3: /etc/ chatscripts/
gprs

01 #!/bin/bash

02

03 PATH="/bin:/sbin:/usr/bin:/
usr/sbin:/usr/X11R6/bin"

04 export PATH

05

06 TITLE="BLUETOOTH PIN"

07

08 umask 077

09

10 TMP="/tmp/btpin.$$"

11

12 PIN=""

13

14 X="$(/bin/ps --format args
--no-headers -C X -C XFree86
-C Xorg 2>/dev/null)"

15

16 XAUTHORITY=""

17 DISPLAY=""

18

19 if [-n "$X"]; then

20 DISPLAY=":0"

21 authfile=""

22 for i in $X; do

23 [-n "$authfile"] && export
XAUTHORITY="$i"

24 case "$i" in :*) export
DISPLAY="$i" ;; -auth)
authfile="true"; continue ;;
esac

25 authfile=""

26 done

27 fi

28

29 if [-n "$DISPLAY"]; then

30 DIALOG=Xdialog

31 else

32 DIALOG=dialog

33 exec >/dev/console </dev/
console 2>&1

34 fi

35

36 rm -f "$TMP"

37

38 $DIALOG --title "$TITLE"
--insecure --passwordbox
"$TITLE" 8 35 2>"$TMP"

39

40 PIN="$(cat $TMP)"

41 rm -f "$TMP"

42

43 [-n "$PIN"] && echo
"PIN:$PIN" || echo "ERR"

Listing 2: /usr/ local/ bin/ btpin.sh

If rfcomm0 is already used by different
hardware, you might want to use a dif-
ferent rfcomm device number (also
shown in the example configuration
below).

Instead of restarting Bluetooth now
with the command /etc/init.d/bluetooth
restart, you can just add a binding for
rfcomm0:

root@Koffer# rfcomm bind U
rfcomm0 00:01:E3:07:3E:1A

and check with:

root@Koffer# rfcomm

to see whether the device is correctly
listed as clean or closed (unless it’s
already in use).

Shaking Hands
Before you can successfully launch a
connection to the cellphone via /dev/
rfcomm0, you have to solve a problem
related to the Bluetooth handshake pro-
cedure, which requires typing the same
Bluetooth PIN or password on both your
computer and the cellphone.

Whereas your cellphone will just pres-
ent a dialog asking for a PIN (which is
not the secret PIN number that protects
your phone from unauthorized phone
calls), mechanisms for entering the Blue-
tooth handshake PIN vary a lot with
different GNU/ Linux distributions.

In older versions of bluez-utils, a PIN
helper program was specified in /etc/
bluetooth/hcid.conf with the pin_helper
option.

This option is missing from newer
versions and is replaced with dbus appli-
cation-level message exchange. This

Bluetooth with GPRSCOVER STORY

36 ISSUE 80 JULY 2007 W W W. L I N U X- M A G A Z I N E . C O M

Universal Mobile Telecommunications
Service (UMTS) is an alternative mobile
networking technology. Portable com-
puters often connect to UMTS mobile
networks with UMTS-ready PCMCIA
cards. The UMTS PCMCIA solution is an
alternative to the Bluetooth cellphone
option in some locations.

What /dev/rfcomm* is for Bluetooth cell-
phones, /dev/ttyS* is for UMTS PCMCIA
cards. The hardware configuration part
is again easy: A UMTS PCMCIA card
should identify itself as a PCMCIA serial
modem, which you can check by looking
into the dmesg output after inserting the
card. Let’s assume for now that the card
will show up as ttyS2. All mention of
/dev/rfcomm0 should be changed to /
dev/ttyS2 in the previous GPRS config-
uration files.

For locally installed cards, no Bluetooth
handshake is necessary, but another
problem occurs: like many cellphones,
the card is usually protected by a per-
sonal PIN number that you must enter
immediately after switching the device
on. In this case, you can submit the PIN
with the AT command

AT+CPIN=1234

which has to be sent to the card’s
corresponding serial device about four
seconds before sending the first con-
figuration or dial commands. The 1234 is
the personal PIN number associated with
the card (usually printed in the docu-
ments that you received when buying
the card).

When entering this PIN, which is entirely
different from the Bluetooth handshake

PIN, instead of sending the PIN manu-
ally, you could change the gprs chat-
script to something similar to the script
in Listing 5, which is based on the eplus
UMTS PCMCIA card.

The 1234 has to be replaced by the
correct personal PIN, of course.

Please be aware that some cards will
only allow up to two or three failed at-
tempts on entering the PIN, at which
point the card will be permanently
blocked.

The card will be blocked until either a dif-
ferent code is entered to unlock the PIN
or the card is sent to the vendor’s sup-
port service to get unlocked.

The PPP configuration file will have to be
changed, at least to use a different serial
port (Listing 6).

UMTS

01 # You usually need this if
there is no PAP authentication

02 noauth

03 # The chat script for talking
to the modem

04 connect "/usr/sbin/chat -v -f
/etc/chatscripts/gprs"

05 # Set up routing to go through
this PPP link (the ip-up
script does this now)

06 nodefaultroute

07 # modem port (/dev/ircomm0 for
IRDA)

08 # /dev/ircomm0

09 /dev/rfcomm0

10 # Speed

11 115200

12 # Ignore carrier detect signal

from the modem:

13 local

14 modem

15 # Keep modem up even if
current connection fails

16 persist

17 # Use hardware flow control
with cable, Bluetooth, and
USB.

18 crtscts

19 # Be extra verbose

20 debug

21 # Let the server handle all
configuration

22 passive

23 noipdefault

24 ipcp-accept-local

25 ipcp-accept-remote

26 ipcp-restart 4

27 ipcp-max-configure 20

28 ipcp-max-failure 20

29 lcp-echo-interval 4

30 lcp-echo-failure 0

31 # Special protocol options

32 # asyncmap 0xa0000

33 novj

34 nodeflate

35 nobsdcomp

36 # Tell pppd to set up DNS
servers set above

37 usepeerdns

38 # Leave username blank.
Really!

39 user ""

Listing 4: /etc/ ppp/ peers/ gprs

means it is no longer sufficient to di-
rectly use a small dialog/ Xdialog-based
shell script like the one in Listing 2 for
key exchange.

Luckily, it is still possible to use a
script similar to Listing 2 with the new
dbus-based passkey-agent, which is
currently located in the kdebluetooth
Debian package, even though it is just a
console program that can be called with:

knopper@Koffer:~U
$ passkey-agent --default U
/usr/local/bin/btpin.sh &

PIN on Demand
Because passkey-agent does not require
root privileges to listen on dbus, you can
start passkey-agent as a normal user,
which makes access to the graphical
display easier in the actual PIN input
reader. (For instance, you could rewrite
btpin.sh so it does not have to extract
xauth cookies.)

Some Linux distributions might re-
quire you to store the Bluetooth PIN for
outgoing connections in a file such as
/etc/bluetooth/pin, but I think that pro-
viding the PIN on demand is a better
approach.

Chat and PPP
Once a modem connection to the cell
phone is configured, you can set up a
chat script for a GPRS connection (List-
ing 3). The line AT+CGDCONT=1,"IP",
"internet" is the correct setting for net-

work provider O2; other possibilities
could be:

eplus: AT+CGDCONT=U
1,"IP","internet.eplus.de"
vodafone: AT+CGDCONT=U
1,"IP","web.vodafone.de"
D1: AT+CGDCONT=U
1,"IP","internet.t-d1.de"

The line:

ATD*99***1#

actually initiates the GPRS “dialing” pro-
cess, which will then require the PPP
protocol for local authentication and IP
configuration.

A PPP setup similar to the configura-
tion shown Listing 4 should work with
most cellphones. Please note that you
leave the “user” option argument empty
here because authentication against your
provider’s customer database is really
done through your phone number and

the cellphone’s IMEI device identifica-
tion. pppd merely handles a reliable
connection between your cellphone
and your computer on the TCP/ IP level,
so your cellphone almost looks like a
network card to your computer.

Getting Connected
After adding the configuration files de-
scribed in this article and setting the
parameters to match your provider and
cellphone or UMTS card, you can get
connected by starting the PPP daemon:

root@Koffer# U
pppd nodetach call gprs

If you want to see a more verbose
description of what’s happening, add
debug right after the pppd command.

As soon as two lines with IP addresses
appear, you are connected. Don’t be con-
fused by the private IP networks that
pppd displays – these private networks
are used internally between your com-
puter and the GPRS provider, and they
are masqueraded via real, routed IP
addresses. However, because of this
design, GPRS and UMTS are currently
not usable for running servers that are
visible from the Internet, except with
a tunnel or proxy.

A Ctrl-C in the preceding example will
end the pppd command and disconnect
your GPRS or UMTS session.

With GPRS and UMTS, as opposed to
GSM phone mode, traffic is usually
billed by volume (kilobytes transferred)
and not by time. But please look up the
actual price list to make sure you can
afford it. ■

COVER STORYBluetooth with GPRS

37ISSUE 80 JULY 2007W W W. L I N U X- M A G A Z I N E . C O M

Interactive response of GPRS and UMTS
is horrible; you will experience up to
three seconds of delay between hitting a
key and seeing the letter appear in a re-
mote SSH session. You can get used to
this, but it is uncomfortable. For reading
web pages, you should probably disable
autoloading of pictures to save your
phone bill and speed up page down-
loads. Because GPRS is not designed to
automatically compress transferred
data, you also might experience a dra-
matic speed (and cost) improvement by
using a vtun or SSH tunnel to a remote
proxy instead of fetching raw data,
especially for text-based protocols like
http, imap, or pop3.

GPRS Hints

01 noauth

02 connect "/usr/sbin/chat -v -f
/etc/chatscripts/
umts-with-pin"

03 nodefaultroute

04 /dev/ttyS2

05 115200

06 local

07 modem

08 persist

09 crtscts

10 passive

11 noipdefault

12 ipcp-accept-local

13 ipcp-accept-remote

14 ipcp-restart 4

15 ipcp-max-configure 20

16 ipcp-max-failure 20

17 lcp-echo-interval 4

18 lcp-echo-failure 0

19 novj

20 nodeflate

21 nobsdcomp

22 usepeerdns

23 user ""

Listing 6: /etc/ ppp/ peers/
umts

01 TIMEOUT 120

02 ABORT BUSY

03 ABORT "NO CARRIER"

04 "" 'ATE1'

05 OK AT+CPIN=1234

06 TIMEOUT 4

07 OK-AT+CPIN?-OK AT+CGDCONT=1,"
IP","internet.eplus.de"

08 TIMEOUT 120

09 ABORT ERROR

10 # use OK AT_OPSYS=3,2 to
prefer UMTS, but still accept
GPRS (default setting?)

11 OK ATD*99***1#

12 CONNECT \d\c

Listing 5: /etc/ chatscripts/
umts-with-pin

