
Most Linux users have had some
experience with the legacy Net-
work File System (NFS [1]).

NFS relies on executing remote proce-
dure calls (RPCs) to give a local machine
access to remote data. Unfortunately,
RPCs can cause trouble in modern IT

landscapes, especially in the interopera-
bility field. For example, RPCs are nor-
mally blocked by firewalls, and the pro-
cedural programming techniques associ-
ated with RPCs aren’t state of the art.

Web service technology appears to be
the natural successor to RPCs. Web ser-

vices are object oriented and rely on
open standards such as XML. Web ser-
vices are also typically based on HTTP,
and firewalls don’t try to block them.

A web service filesystem (WSFS) can
run in either kernel space or user space.
Because Fuse (Filesystem in Userspace)
[2] provides a tried-and-trusted interface
for implementing filesystems in user-
space applications, we decided to use
Fuse as the underpinnings for a WSFS.
The goal is to provide a tangible example
of web service technologies in Linux. Of

The Fuse kernel module lets developers implement even the most

idiosyncratic of filesystems. We’ll show you how to build a filesystem

that relies on SOAP to publish data over web services.

BY MATTHIAS FÜLLER, WILLI NÜSSER, AND DANIEL ROSOWSKI

access chmod
chown create
destroy flush
fsync ftruncate
getattr init
link mkdir
mknod open
opendir read
readdir readlink
release rename
rmdir statfs
symlink truncate
unlink utime
write

Table 1: Filesystem
Functions

01 package wsfs;

02 ...

03 public interface WsFsInterface {

04 public void chmod(String path, int mode) throws WsFsException;

05 public WsFsStat getattr(String path) throws WsFsException;

06 public long open(String path, int flags) throws WsFsException;

07 public byte[] read(String path, long fh, long offset, int
size) throws WsFsException;

08 public void mkdir(String path, int mode) throws WsFsException;

09 ...

10 }

Listing 1: Server Interface WsFsInterface.java

Building a web service filesystem with SOAP and Fuse

SOAPED UP

U
sch

i H
erin

g
, Foto

lia
SYSADMINA web service filesystem

69ISSUE 81 AUGUST 2007W W W. L I N U X- M A G A Z I N E . C O M

course, several very robust and useful
Linux filesystems already exist. You
should treat this example as a proof of
concept rather than relying on this file-
system for production use.

How Fuse Works
Figure 1 shows the general structure of a
filesystem that relies on Fuse. The latter

includes two major
components: the Fuse
library, Libfuse, and the
kernel module, fuse.ko.
The kernel module
helps the virtual file-
system layer recognize
Fuse as an independent
filesystem type and
passes requests for this
filesystem to fuse.ko.

A single kernel mod-
ule is all you need for a
filesystem like Ext3,
which resides totally
within the kernel. Fuse
additionally needs to
communicate with the
filesystem implementa-
tion, which runs in
user space. Libfuse and
the /dev/fuse device file
handle this.

Libfuse acts as an-
abstraction layer that
removes the need for
direct contact between
the filesystem imple-

mentation and the device file.
Before you can harness the power of

Fuse for your own development work,
you need to do some things: install the
kernel module, create a user-space im-
plementation of the filesystem (typically
by running a C or Java application), then
link the application with Libfuse, call an
entry method, and run it.

In a C environment, the function name
is fuse_main(); in Java, the FuseMount.
mount() method handles initialization.
In the background, both of these calls
tell Fuse to execute the familiar Linux
system call mount(). Pass in the third ar-
gument, the type of filesystem to mount,
to "fuse", and your user-space filesystem
should be ready for use.

The call to the Fuse library triggers the
library to poll the /dev/fuse file for com-
mands. Every operation on this filesys-
tem – ls and mkdir, for example – is now
passed to the Fuse kernel module via
GLibc and the VFS. The VFS stores
requests for the /dev/fuse file, allowing
Libfuse to pass them on to the imple-
mentation for processing. The results
of processing – a directory listing, for
example – retrace these steps to their
point of origin.

Web Services
After this short introduction to Fuse, it is
now time to mount the planned filesys-
tem with the use of a web service. Web
services fulfill the main task that RPCs
are normally asked to perform: support-
ing simple communications between dis-
tributed applications. However, web ser-
vice technologies do far more than RPCs
in many respects, explicitly addressing
applications that use the Internet to
communicate. To allow this to happen,
they need an open, cross-platform data
format on the one hand and open data
transmission methods on the other.

01 package wsfs;

02 ...

03 public class WsFs implements
WsFsInterface {

04

05 final String mountpath = "/
tmp";

06

07 public WsFsStat
getattr(String path) throws
WsFsException {

08 File file = new
File(mountpath + path);

09 if(file.exists()) {

10 WsFsStat stat = new
WsFsStat();

11 stat.mode = file.

isDirectory() ? FuseFtype.
TYPE_DIR | 0755 : FuseFtype.
TYPE_FILE | 0644;

12 stat.nlink = 1;

13 stat.uid = 500;

14 stat.gid = 500;

15 stat.size = file.
length();

16 stat.atime = stat.
mtime = stat.ctime = (int)
(file.lastModified()/1000L);

17 stat.blocks = (int)
((stat.size + 511L)/512L);

18

19 return stat;

20 }

21 throw new

WsFsException("No Such
Entry").initWsFsErrno(FuseExce
ption.ENOENT);

22 }

23

24 ...

25

26 public void mkdir(String
path, int mode) throws
WsFsException {

27 File f = new
File(mountpath + path);

28 if(!f.exists())

29 f.mkdir();

30 }

31

32 }

Listing 2: Server Implementation WsFs.java

Figure 1: Fuse gives programmers enormous potential for imple-

menting a filesystem in user space. The Fuse architecture is

the basis for the web-service-based filesystem in this article.

»/dev/fuse«

Kernel

Userspace

Glibc

Libfuse
(like »ls«)
Program

VFS

Fuse Module

Userspace
Filesystem

A web service filesystemSYSADMIN

70 ISSUE 81 AUGUST 2007 W W W. L I N U X- M A G A Z I N E . C O M

Web service standardizing bodies
opted for XML to fulfill the first of these
requirements, with HTTP as the typical
transport protocol. Programmers do not
need to restrict themselves to HTTP,
however; they could just as easily opt for
a different transport mechanism, such as
SMTP or even pure TCP [4].

Web service communications typically
start by encoding the data in the XML
format specified by the SOAP standard
before transmitting. The second step is
HTTP-based transport initiated by a
POST request. The receiving end un-
packs the data and processes them. To
allow this to happen, both communica-
tion partners talk the same language, al-
lowing the receiver to correctly interpret
the data sent to it.

The description of the data and meth-
ods provided by the receiver is typically
explicit. The Web Service Description
Language (WSDL) provides a tried-and-
trusted XML-based tool to handle this.
Figure 2 shows a simplified overview of

this relationship. The entity that sends
the request is typically referred to as a
consumer because it uses the services
provided by the receiver (producer).

Beyond the two standards referred to
in Figure 2 – SOAP and WSDL – many
other standards for web services have
developed. Methods exist for the use of
transactions [5] or to ensure secure data
transmission [6]. None of these addi-

tional standards has any effect on the is-
sues under consideration in this article.

Java, C/ C++, and scripting lan-
guages such as Python are a typical
choice of programming language for the
implementation. The consumer typically
runs as a standalone application and the
producer as a service on a SOAP engine
such as Apache Axis [7] or Codehaus
XFire [8]. Axis and XFire both run as
web applications on an application
server such as, say, Tomcat. Because to-
day’s SOAP engines also are governed by
a large number of additional web service
standards, they are referred to as web
service stacks.

Structure of a WSFS
To implement a web-based filesystem,
we have to combine Fuse with web ser-
vice technology. To do so, we used Java
because both Apache Axis and Code-
haus XFire are native Java solutions.

The Fuse-Java connector, Fuse-J [3],
comprises the libjavafs.so library, which
uses the Java Native Interface (JNI) to

01 import org.codehaus.xfire.
XFire;

02 import org.codehaus.xfire.
XFireFactory;

03 import org.codehaus.xfire.
server.http.XFireHttpServer;

04 import org.codehaus.xfire.
service.*;

05

06 import wsfs.WsFs;

07 import wsfs.WsFsInterface;

08 ...

09

10 WsFs wsfs = new WsFs();

11

12 // Create service ...

13 ObjectServiceFactory
serviceFact = new
ObjectServiceFactory();

14 Service service =
serviceFact.
create(WsFsInterface.class);

15 service.setInvoker(new
BeanInvoker(wsfs));

16

17 // ... and register

18 XFire xfire = XFireFactory.
newInstance().getXFire();

19 xfire.getServiceRegistry().
register(service);

20

21 // Start server

22 XFireHttpServer server =
new XFireHttpServer();

23 server.setPort(8191);

24 server.start();

25 ...

Listing 3: Startup Code for XFire Server

Figure 2: In a web service app, the consumer relies on services provided by a producer. Both

sides use SOAP to encode the data in XML, and WSDL to negotiate the correct interpretation.

Web Service
Consumer

(Client)

Web Service
Producer
(Server)

SOAP (XML)

Interface (WSDL)
Web Service

Table 1 shows the methods a fully imple-
mented filesystem needs to possess.
They include simple display methods
such as getattr, which outputs informa-
tion such as size, owner, and access
times, as well as methods for modifying
metadata, such as chmod, and data
access methods such as read and write.

The Java link Fuse-J [3], which we use
as an example of a WSFS in this article,
does not support all the calls listed in
Table 1. For example, it does not include
access; the Fuse-J developers have bun-
dled other calls (getdir is simply a suc-
cession of calls to opendir, readdir, and
closedir).

Interfaces and Java Tie-In

Read and write speed is a critical factor
in opting for or against a filesystem. A
couple of benchmarks revealed some of
WSFS’s major speed deficits.

A single copy operation within the
WSFS via the loopback device achieved
a speed of 0.5MBps; a comparable copy
with an NFS configuration achieves
speeds of 7 to 10MBps, about 20 times
the performance. In a production envi-
ronment, the network would add an-
other restricting factor. The values are
reflected in the known overhead of an
RPC call compared with a web service
call – the difference is typically at least
a factor of 10.

Speeds Compared

SYSADMINA web service filesystem

71ISSUE 81 AUGUST 2007W W W. L I N U X- M A G A Z I N E . C O M

support access by Java applications to
the C code of Fuse, and the interface
description for a Java filesystem. This
description includes the Java interface,
fuse.Filesystem, with methods such as
open(), getattr(), and read().

Figure 3 clarifies the relationship be-
tween Fuse, Fuse-J, and the web applica-
tion. The user-space implementation of
the filesystem includes a local Java ap-
plication, which acts as the Java client
for the web service component and
handles mounting at one end. The sec-
ond component, the web service itself,
resides on a remote computer.

The web service receives requests
from the Java client in the form of SOAP
messages. The web service processes the
requests and returns the results as SOAP
messages.

Implementing the Server
The WSFS here is based on XFire, which
is less well known than Apache Axis but
an interesting and easy-to-use alternative
all the same. The basic approach is the
same in both environments, so we con-
centrated on XFire in this article.

Developing Web Services in general
can be done from two different starting
points. The first approach calls for the
developer to define a publicly visible in-
terface to the web service. This defini-
tion includes the structure of the data to
be exchanged and the available opera-
tions. The definition is normally stored
in a WSDL file.

Tools are created from the WSDL file
code framework, which programmers
can then fill with implementation logic.
This approach is often known as contract
first, meaning that the WSDL description
(the contract) is the first item on the
roadmap.

The alternative is the pragmatic code
first approach, which many developers
prefer. The first step is to code Java in-
terfaces and their implementations in
the normal way and then use the en-
gines to create a WSDL file as needed.
The next step is to apply the WSDL file
to create clients.

For this article, we will use the code
first approach because Fuse and Fuse-J
already have all the definitions and in-
terfaces we need. The first task is to cre-

ate the web service that will wait for and
process filesystem requests via SOAP.
Listing 1 shows an excerpt from this in-
terface that implements the web service
and complies with the filesystem inter-
faces described previously.

These methods match the methods
referred to as Filesystem by the central
Fuse-J interface, the only modification
being that they use byte arrays instead
of ByteBuffer, for the simple reason that
byte arrays are easier to implement as
web service calls [9]. The method defini-
tions are to be found in the WsFs class;
its basic structure is shown in Listing 2.

The implementation in Listing 2 uses
the WsFsStat class, which can be viewed
as an example for the various classes re-

01 ...

02 public static void
main(String[] args) {

03 new WsFsClient(args);

04 }

05

06 public WsFsClient(String[]
args) {

07

08 ObjectServiceFactory
serviceFactory = new
ObjectServiceFactory();

09 Service serviceModel =
serviceFactory.

create(WsFsInterface.class);

10

11 XFireProxyFactory
proxyFactory = new
XFireProxyFactory();

12 WsFsInterface wsfs =
(WsFsInterface) proxyFactory.c
reate(serviceModel,"http://
SERVER:8191/WsFsInterface");

13

14 FuseMount.mount(args,
new ClientFS(wsfs));

15 ...

16 }

Listing 4: WSFS Client WsFsClient.java

01 ...

02 public FuseDirEnt[]
getdir(String path) throws
FuseException {

03 return wsfs.
getdir(path);

04 }

05

06 public void read(String

path, long fh, ByteBuffer buf,
long offset) throws
FuseException {

07 byte[] b = wsfs.
read(path,fh,offset,buf.
limit());

08 buf.put(b);

09 }

Listing 5: Client Proxy ClientFS.java

[1] NFS overview:
http:// nfs. sourceforge. net

[2] Fuse project homepage:
http:// fuse. sourceforge. net

[3] Fuse-J project homepage: http://
sourceforge. net/ projects/ fuse-j

[4] Alonso, G., F. Casati, H. Kuno, and V.
Machiraju. Web Services. Springer,
2004.

[5] Web Services Transactions specifica-
tions: http:// www-128. ibm. com/
developerworks/ library/ specification/
ws-tx/

[6] WS-Security: http:// www-128. ibm.
com/ developerworks/ library/
specification/ ws-secure/

[7] Apache Axis (versions 1.x and 2):
http:// ws. apache. org

[8] XFire: http:// xfire. codehaus. org

[9] XFire User Guide, serialization in
XFire: http:// xfire. codehaus. org/
Aegis+Binding

[10] Java Native Interface:
http:// java. sun. com/ docs/ books/ jni/

[11] XFire User Guide, Embedded
HTTPServer: http:// xfire. codehaus.
org/ Embedded+XFire+HTTP+Service

[12] Tomcat: http:// tomcat. apache. org

[13] XFire User Guide, reference to ser-
vices.xml: http:// xfire. codehaus. org/
services. xml+Reference

[14] IBM Developerworks on web service
performance: http:// www-128. ibm.
com/ developerworks/ webservices/
library/ ws-best9/

[15] SOAP Message Transmission Opti-
mization Mechanism (MTOM):
http:// www. w3. org/ TR/ 2004/ WD-
oap12-mtom-20040209/

INFO

A web service filesystemSYSADMIN

72 ISSUE 81 AUGUST 2007 W W W. L I N U X- M A G A Z I N E . C O M

quired to extend the corresponding Fuse-
J classes. They include additional setter
and getter methods for trouble-free use
in a web service environment, especially
for serializing Java objects in XML
streams. More or less all web service
tools expect this Bean-style behavior.

The server implementation is fairly
easy. The mount path is hard coded in
the class definition (/tmp in this case).
Almost all required file access can be im-
plemented with the use of just the Java
standard classes. However, Java does not
give us the ability to read file attributes
directly. Although JNI [10] solves this
problem, this is not the focus of this arti-
cle, which explains why the code in List-
ing 2 implements a dummy that allo-
cates fixed values for user privileges.

Finally, to make the whole enchilada
available as a web service, the imple-
mentation needs to be embedded in
XFire. The latter runs as a framework in
a servlet container. To allow this to hap-
pen, XFire includes the Jetty server [11];
as an alternative, you could use Apache
Tomcat [12]. Because the XFire+Jetty
variant is easier to configure, we opted
to stick with it for this article.

Deploying the WSFS service typically
involves several steps, including staging
the compiled code and creating a couple
of XML configuration files. The files in-
clude web.xml, which you will know
from servlet containers, and an XFire-
specific configuration file called services.
xml [13]. If you opt for Jetty, the config-
uration is handled by Java code. Start
by launching the HTTP daemon on the
server; Listing 3 will handle this.

The service factory automatically cre-
ates the WSDL file from the WsFsInter-
face passed to it and calls the methods
from the WsFs implementation class
passed to it. After compiling and launch-
ing the Java code, the server now listens
on port 8191. The server should display
the WSDL description of the WSFS in
response to a URL of http://HOST:8191/
WsFsInterface?wsdl. Now it’s time to
start developing the client.

Implementing the Client
Listing 4 shows sample client code that
uses XFire-specific calls. If you use
Axis, the only call not to change is the
central FuseMount.mount(args, new
ClientFS(wsfs)); call, which mounts the
filesystem.

The ClientFS type object, which the
client in Listing 4 instantiates, is a proxy
for the web service.

ClientFS accepts requests and passes
the requests in to the web service as
SOAP messages. Listing 5 shows an ex-
ample of this in the form of a modified
wrapping to convert, say, ByteBuffer to
simple byte arrays.

For developers who prefer to avoid
complex XML processing, there is good
news: The engine, XFire in our case,
takes care of managing XML messages
and the SOAP protocol. This convenient
interface is one of the major reasons that
engines such as Axis and XFire have be-
come so widely accepted.

To wrap things up and test the WSFS,
you can now launch the central client
class, WsFsClient; the mount command
should now show another filesystem.
Commands such as ls will be passed
to the WsFs server implementation via
SOAP from now on, and a response
to reflect the directories and files on the
server should be returned.

Conclusions
Developing a simple web-service-based
filesystem on Linux is fairly painless
thanks to the existing tools. Fuse and
Fuse-J provide interfaces for developing
a user-space filesystem, and Linux has
powerful environments such as XFire
and Axis to considerably facilitate work
with web service standards and remove
the need for extensive coding.

This said, the example shown in this
article is not meant to be more than a
prototype for two reasons. First, it is
fairly simple to implement read-only file-
systems. A fully fledged filesystem that
supports arbitrary write operations is far
more sophisticated (just think about syn-
chronizing access to shared data).

The second reason our implementa-
tion remains a prototype is the weakness
of web services, as evidenced by the ex-
ample of a filesystem. The prototype
showed extremely slow response in data
transfer via the loopback device – refer
to the box titled “Speeds Compared.”

These figures point to various known
issues with web service performance
[14]. Many minor system calls, as gener-
ated when we ran ls, are poison if they
trigger extensive XML parsing, as in our
case. On the other hand, extremely large
data packets can also generate excessive
load, especially when transported within
the XML message and not in an attach-
ment [15]. ■

Willi Nüßer is Professor for Applied
Computer Science at the Fachhoch-
schule der Wirtschaft (FHDW, Uni-
versity of Applied Science) in Pader-
born, Germany. Before this appoint-
ment, Willi worked for SAP for six
years, where he was a developer in
the SAP Linux Lab.

Matthias Füller and Daniel Rosowski
are students of Technical Computer
Science at the FHDW.

T
H

E
 A

U
T

H
O

R

Figure 3: WSFS structure with Apache Axis or Codehaus XFire.

Kernel

Userspace

Glibc

Libfuse

Program

VFS

Fuse Module

(Fuse-J)
Java Wrapper

Java Client

Container
Servlet

Web App
(Xfire, Axis)

SOAP

WSFS

»/dev/fuse«

SYSADMINA web service filesystem

73ISSUE 81 AUGUST 2007W W W. L I N U X- M A G A Z I N E . C O M

