
Shell scripts are a lazy person’s
best friend. That may sound
strange, because writing a shell

script presumably takes work, but it’s
true. Writing a shell script to perform a
repetitive task requires some time up
front, but once the script is finished,
using it frees up the time the task used
to take. In this article, I will introduce
you to writing shell scripts with Bash.
I’ll describe Bash scripting in the context
of several common tasks. Because this is
an introductory discussion, some nu-
ances are glossed over or ignored, but I
will provide plenty of information for
you to get started on your own scripts.

Hello, Bash
In its simplest form, a shell script is just
a file containing a list of commands to
execute. For example, here is a script
that a user created to avoid having to
type a long tar command every time she
wanted to back up all her picture files:

#!/bin/bash

tar cvzf /save/pix.tgz U

 /home/chavez/pix /graphics/rdc U

 /new/pix/rachel

The script begins with a line that identi-
fies the file as a script. The characters #!
are pronounced “shbang,” and the full
path to the shell follows: In this case, the
Bash executable. The remainder of the
script is the tar command to run.

One more step is necessary before this
script can actually be used. The user
must set the executable file permission
on the file so that the shell will know
that it is a runnable script. If the script
file is named mytar, the following chmod
command does the trick (assuming the
file is located in the current directory):

$ chmod u+x mytar

$./mytar

The second command runs the script,
and many messages from tar will follow.

So far, the user has reduced the work
required to create the tar archive from
typing 75 characters to typing eight char-
acters. However, you could make the
script slightly more general – and poten-
tially more useful – by putting the items
to be saved on the command line:

$./mytar /home/chavez U

 /new/pix/rachel /jobs/proj5

This command backs up a different set
of files. The modified script is shown in
Listing 1, and it illustrates several new
features:
•	 The	tar command now uses I/ O redi-

rection to suppress non-error output.
•	 The	tar command is conditionally exe-

cuted. It is placed inside an if state-
ment. If the test condition specified in
the square brackets is true, then com-
mands following are executed; other-
wise, they are skipped.

•	 The	if	condition	here	determines	
whether the number of argument
specified to the script, indicated by the
$# construct, is greater than 0. If so,
then the user lists some items to back
up. If not, then the script was run
without arguments and there is noth-
ing to do, so the tar command won’t
run.

•	 The	script’s	command-line	arguments	
are placed into the tar command via
the $@ construct, which expands to
the argument list. In this example, the
command will become:

tar czf /save/mystuff.tgz U

 /home/chavez /new/pix/rachel U

 /jobs/proj5 >/dev/null

Placing command-line arguments into
the tar command allows the script to
back up the necessary files.

Input File
The next incarnation of the script
changes how it is run slightly (Listing 2).
Now, the first command argument is as-
sumed to be the name of a file contain-
ing a list of directories to back up. Any
additional arguments are treated as lit-
eral items to be backed up.

DIRS and OUTFILE are variables used
within the script. I’ll use the convention
of uppercase variable names to make
them easy to identify, but this is not re-
quired. The first command in the script
places the contents of the file specified

A few scripting tricks will help you save time by automating common tasks. By Æleen Frisch

Getting started with Bash scripting

Custom sCript

©
 C

a
rlos C

a
eta

n
o, 12

3
R

F.co
m

Bash scriptingAutomAtIon

90 Linux SheLL hAndbook

090-095_scripting_SE10.indd 90 02/08/11 6:23:16 PM

as the script’s first argument into DIRS.
This is accomplished by capturing the
cat command output via back quotes.

Back quotes run whatever command
is inside them and then place that com-
mand’s output within the outer com-
mand, which then runs. Here, the cat
command will display the contents of
the file specified as the script’s first argu-
ment – the directory list – and place it
within the double quotes in the assign-
ment statement, creating the variable
DIRS. Note that line breaks in the direc-
tory list file do not matter.

Once I’ve read that file, I am done
with the first argument, so I remove it
from the argument list with the shift
command. The new argument list con-
tains any additional directories that were
specified on the command line, and $@
will again expand to the modified argu-
ment list. This mechanism allows the
script user to create a list of standard
items for backup once, but also to add
additional items when needed.

The third command defines the vari-
able OUTFILE using the output of the
date command. The syntax here is a
variant form of back quoting: `com‑
mand` is equivalent to $(command).
This type of operation is known as com-
mand substitution. The final command
runs tar, specifying the items from the
first argument file and any additional ar-
guments as the items to be backed up.
Note that when you want to use a vari-
able within another command, you pre-
cede its name by a dollar sign: $DIRS.

Adding Checks
Listing 2 is not as careful as the previous
example in checking that its arguments
are reasonable. Listing 3 shows the be-
ginning of a more sophisticated script
that restores this checking and provides
more flexibility. This version uses the
getopts feature built into Bash to process
arguments quickly.

The first two commands assign values
to the DEST and PREFIX variables, which
specify the directory where the tar ar-
chive should be written and the archive
name prefix (to be followed by a date-
based string). The rest of this part of the
script is structured as a while loop:

while condition‑cmd;

 commands

done

The loop continues as long as the condi-
tion is true and exits once it becomes
false. Here, the condition is getopts
"f:bn:d: " OPT. Conditional expressions
are enclosed in square brackets (as seen
in the preceding and following if state-
ments), but full commands are not
(technically, the square brackets invoke
the test command). Commands are true

while they are returning output, and
false when their output is exhausted.

The getopts tool returns each com-
mand-line option, along with any argu-
ments. The option letter is placed into
the variable specified as getopts’ second
argument – here OPT – and any argu-
ment is placed into OPTARG. getopts’
first argument is a string that lists valid
option letters (it is case sensitive); letters
followed by colons require an argument
– in this case, f, n, and d. When speci-
fied on the command line, option letters
are followed by a hyphen.

The command inside the while loop is
a case statement. This statement type
checks the value of the item specified as
its argument – here, the variable OPT set
by getopts – against the series of pat-
terns specified below. Each pattern is a
string, possibly containing wildcards,

01 #!/bin/bash

02

03 if [$# ‑gt 0]; then # Make

sure there is at least one argument

04 tar czf /save/mystuff.tgz $@ >

/dev/null

05 fi

Listing 1: Modified
Backup Script 01 #!/bin/bash

02

03 DIRS="`cat $1`" # DIRS = contents of file in 1st argument

04 shift # remove 1st argument from the list

05 OUTFILE="$(date +%y%m%d)" # create a date‑based archive name

06 tar czf /tmp/$OUTFILE.tgz $DIRS $@ >/dev/null

Listing 2: Specifying an Input File

01 #!/bin/bash

02

03 DEST="/save" # Set default archive location & file prefix

04 PREFIX="backup"

05

06 while getopts "f:bn:d:" OPT; do # Examine command line arguments

07 case $OPT in # Specify valid matching patterns

08 n) PREFIX=$OPTARG ;; # ‑n <prefix>

09 b) ZIP="j"; EXT="tbz" ;; # ‑b = use bzip2 not gzip

10 f) DIRS=$OPTARG ;; # ‑f <dir‑list‑file>

11 d) if ["${OPTARG:0:1}" = "/"] # ‑d <archive‑dir>

12 then

13 DEST=$OPTARG

14 else

15 echo "Destination directory must begin with /."

16 exit 1 # end script with error status

17 fi

18 ;;

19 :) echo "You need to give an argument for option ‑$OPTARG."

20 exit 1

21 ;;

22 *) echo "Invalid argument: ‑$OPTARG."

23 exit 1

24 ;;

25 esac

26 done

Listing 3: Restoring Checking

AutomAtIonBash scripting

91Linux SheLL hAndbook

090-095_scripting_SE10.indd 91 02/08/11 6:23:16 PM

terminated by a closing parenthesis. Or-
dering is important because the first
matching pattern wins.

In this example, the patterns are the
valid option letters, a colon, and an as-
terisk wildcard matching anything other
than the specified patterns (i.e., other
than n, b, f, d, or :). The commands to
process the various options differ, and
each section ends with two semicolons.
From the commands, you can see that ‑n
specifies the archive name prefix (over-
riding the default set in the script’s sec-
ond command), ‑b says to use bzip2
rather than gzip for compression (as
shown later), ‑f specifies the file contain-
ing the list of items to be backed up, and
‑d specifies the destination directory for
the archive file (which defaults to /save
as before via the first command).

The destination directory is checked to
make sure that it is an absolute path-
name. The construct ${OPTARG:0:1} de-

serves special attention. The most gen-
eral form of $ substitution places curly
braces around the item being derefer-
enced: $1 can be written as ${1}, and
$CAT as ${CAT}. This syntax is useful. It
allows you to access positional parame-
ters beyond the ninth; ${11} specifies
the script’s 11th parameter, for example,
but $11 expands to the script’s first argu-
ment followed by 1: ${1}1. The syntax
also enables variables to be isolated
from surrounding text: If the value of
ANIMAL is cat, then ${ANIMAL}2 ex-
pands to cat2, whereas $ANIMAL2 refers
to the value of the variable ANIMAL2,
which is probably undefined. Note that
periods are not interpreted as part of
variable names (as shown later).

The :0:1 following the variable name
extracts the substring from OPTARG be-
ginning at the first position (character
numbering starts at 0) and continuing
for 1 character: in other words, its first

character. The if command checks
whether this character is a forward
slash, displaying an error message if it is
not and exiting the script with a status
value of 1, indicating an error termina-
tion (0 is the status code for success).

When an option requiring an argu-
ment doesn’t have one, getopts sets the
variable OPT to a colon and the corre-
sponding option string is put into
OPTARGS. The penultimate section of
the case statement handles these errors.
The final section handles any invalid op-
tions encountered. If this happens,
getopts sets its variable to a question
mark and places the unknown option
into OPTARGS; the wildcard pattern will
match and handle things if this event oc-
curs.

This argument handling code is not
bulletproof. Some invalid option combi-
nations are not detected until later in the
script (e.g., ‑f ‑n: -f ’s argument is miss-
ing, so ‑n is misinterpreted as such).

The remainder of the script started in
Listing 3 is shown in Listing 4.

The if statement checks for two possi-
ble problems with the file containing the
directory list. The first test checks
whether the variable DIRS is undefined
(has zero length), exiting with an error
message if this is the case. The second
test, following elif (for “else-if”) makes
sure the specified file exists and is read-
able. If not (the exclamation point in the
expression serves as a logical NOT), the
script gives an error message and exits.

The final two commands create the
date-based part of the archive name and
run the tar command. The tar command
uses some conditional variable derefer-
encing – for example, ${EXT‑tgz}. The
hyphen following the variable name says
to use the following string when the
variable is undefined. EXT and ZIP are
defined only when ‑b is specified as a
command-line option (as tbz and j, re-
spectively). When they have not been
defined earlier in the script, then the val-
ues z and tgz are used.

numeric Conditions
I’ve now shown examples of both condi-
tions involving string comparisons and
file characteristics. Listing 5 introduces
numeric conditions; the script is de-
signed for a company president’s secre-
tary who wants to check whether some-
one is logged in.

01 if [‑z $DIRS]; then # Make sure we have a valid item list file

02 echo "The ‑f list‑file option is required."

03 exit 1

04 elif [! ‑r $DIRS]; then

05 echo "Cannot find or read file $DIRS."

06 exit 1

07 fi

08

09 DAT="$(/bin/date +%d%m%g)"

10 /bin/tar ‑${ZIP‑z} ‑c ‑f /$DEST/${PREFIX}_$DAT.${EXT‑tgz} `cat $DIRS` >
/dev/null

Listing 4: Restoring Checking (continued)

01 #!/bin/bash

02

03 if [$# ‑lt 1]; then # No argument given, so prompt

04 read ‑p "Who did you want to check for? " WHO

05 if [‑z $WHO]; then # No name entered

06 exit 0

07 fi

08 else

09 WHO="$1" # Save the command line argument

10 fi

11

12 LOOK=$(w | grep "^$WHO")

13 if [$? ‑eq 0]; then # Check previous command status

14 WHEN=$(echo $LOOK | awk '{print $4}')

15 echo "$WHO has been logged in since $WHEN."

16 else

17 echo "$WHO is not currently logged in."

18 fi

19 exit 0

Listing 5: Adding Numeric Conditions

Bash scriptingAutomAtIon

92 Linux SheLL hAndbook

090-095_scripting_SE10.indd 92 02/08/11 6:23:16 PM

This script first checks whether any ar-
gument was specified on the command
line. If not, that is, if the number of argu-
ment is less than 1, then it prompts for
the desired user with the read command.
The user’s response is placed into the
variable WHO. Continuing this first case,
if WHO is zero length, then the user
didn’t enter a username but just hit a
carriage return, so the script exits. On
the other hand, if an argument was spec-
ified on the command line, then WHO is
set to that value. Either way, WHO ulti-
mately holds the name of the user to
look for.

The second part of the script in Listing
5 uses two command substitution con-
structs. The first of these constructs
searches the output of the w command
for the desired username, storing the rel-
evant line in LOOK if successful. The
second defines the variable WHEN as the
fourth field of that output (the most re-
cent login time), extracting it with awk
(you don’t have to understand every-
thing about awk to use this simple recipe
for pulling out a field).

This command runs when $? equals 0.
$? is the status code returned by the
most recent command: grep. grep re-

turns 0 when it finds a match and 1 oth-
erwise. Finally, the script displays an ap-
propriate message giving the user’s sta-
tus, as in the following example:

kyrre has been logged in since 08:47.

while and read
The following script illustrates another
use of while and read: processing succes-
sive lines of output or a file. The purpose
of this script is to send mail messages to
a list of (opted-in) users as separate mes-
sages:

Arguments and Variables
$1 $2 ? $9 Command arguments
${nn} General format for argument nn
$@ All command arguments: list of separate items
$* All command arguments: a single item
$# number of command arguments
$0 Script name
$var Value of variable var
${var} General format
${var:p:n} Substring of n characters of var beginning at p
${var-val2} Return val2 if var is undefined
${var+val2} Return val2 if var is defined
${var=val2} Return val2 if var is undefined and set var=val2
${var?errmsg} display “var: errmsg” if var is undefined
arr=(items) define arr as an array
${arr[n]} element n of array arr
${#arr[@]} number of defined elements in arr
getopts opts var Process options, returning option letter in

var (or ? if invalid, or : if required argument
is missing); opts lists valid option letters
optionally followed by a colon to require an
argument (an initial colon says to ignore
invalid options). Returns option’s argument
in OPTARG.

General command constructs
`cmd ̀ Substitute output of cmd.
$(cmd) Substitute output of cmd.
$? exit status of most recent command.
$! Pid of most recently started background com-

mand.
eval string Perform substitution operations on string and

then execute.
. file include file contents within script.
exit n exit script with status n (0 means success).

Arithmetic
$((expression)) evaluate expression as an integer operation.
+ - * / Addition, subtraction, multiplication, division
++ – increment, decrement
% Modulus
 exponentiation

Table 1: Bash Scripting Quick Summary

constructing conditions
-x file Tests whether file has condition indicated by

code letter x. Some useful codes are: -s greater
than 0 length; -r readable; -w writable; -e exists;
-d a directory; -f a regular file.

file1-nt file2 file1 is newer than file2.
-z string string’s length is 0.
-n string string’s length is greater than 0.
string1 = string2 The two strings are identical. other operations:

!=, >, <.
int1-eq int2 The two integers are equal. other operations:

-ne, -gt, -lt, -ge, -le.
! noT
-a And
-o oR
() used for grouping conditions.

input and Output
read vars Read input line and assign successive words to

each variable.
read -p string var Prompt for a single value and place value en-

tered into var.
printf fstring vars display the values of vars according to the for-

mat specified in fstring. Format string consists
of literal text, possibly including escaped char-
acters (e.g., \t for tab, \n for newline) plus for-
mat codes. Some of the most useful are: %s for
string, %d for signed integers, %f for floating
point (%% is a literal percent sign). Follow the
percent sign with a hyphen to specify right
alignment. You can also precede the code let-
ter with a number to specify a field width. For
example, %-5d means a five-digit integer
aligned on the right, %6.2f specifies a field
width of six with two decimal places for a float-
ing point value.

Functions
name () use local to limit variable scope to the function
{
 commands
}

AutomAtIonBash scripting

93Linux SheLL hAndbook

090-095_scripting_SE10.indd 93 02/08/11 6:23:16 PM

#!/bin/bash

/bin/cat U

/usr/local/sbin/email_list |

while read WHO SUBJ; do

 /usr/bin/mail U

 ‑s "$SUBJ" $WHO < $WHAT

 echo $WHO

done

The script sends the contents of the file
names to the while command; the condi-
tion used here is a read command speci-
fying three variables. read will process
each successive line from while’s stan-
dard input – the output of the cat com-
mand – and assigns the first word to
WHO, the second word to WHAT, and
all remaining words to SUBJ (where
words are separated by white space by
default). These specify the email ad-
dress, message file, and subject string for
each person. These variables are then
used to build the subsequent mail com-
mand.

Note that this script uses full path-
names for all external commands. You
should adopt the practice of always
using full pathnames or including an ex-
plicit PATH definition at the beginning of
the script to avoid security problems
from substituted executables. Unfortu-
nately, the script is quite sanguine about
trusting the contents of the email_list file
to include properly formatted email ad-
dresses. If such a script is meant for use
by someone other than the writer, care-
ful checking of email addresses is neces-
sary. Consider the effect of a username

like jane@ahania.com; /somewhere/
run_me within the address list.

Loops
The next two scripts illustrate other
kinds of loops you can use in shell
scripts via the for command. Listing 6
prepares a report of the total disk space
used with a list of directory locations for
a set of users. The files containing the
list of users and the directories to exam-
ine are specified explicitly in the script,
but you could also use options for them.
The script begins by setting the path and
incorporating another file into the script
via the so-called dot command include-
file mechanism (invoked with a period).

A number of items are notable in this
script:
•	 The	for command specifies a variable,

the keyword in, a list of items, and fi-
nally the separate command do. Each
time through the loop (which ends
with done), the variable is assigned to
the next item in the list. WHO is as-
signed to each successive item in the
ckusers file. The construct $(<file) is
shorthand for $(cat file).

•	 The	definition	of	HOMESUM uses back
quotes to extract the total size of the
user’s home directory from the output
of du ‑s via awk. The eval command
causes du to interpret the expanded
version of ~$WHO as a tilde home di-
rectory specifier.

•	 The	definition	of	TMPLIST uses com-
mand substitution to store the size
field (again via awk) from all lines of
ls ‑lR output corresponding to items

owned by the current user (identified
by egrep). The ls command runs over
the directories specified in the ckdirs
file and uses the ‑block‑size option to
make its size display unit match that
used by du (KB). TMPLIST is a list of
numbers: one per file owned by the
current user ($WHO).

•	 The	second	for loop adds the numbers
in TMPLIST into TSUM. The variable
is N, and the list of items is the value
of the TMPLIST variable.

•	 The	Bash	shell	provides	built-in	inte-
ger arithmetic via the construct
$((math‑expression)). The script uses
this construct twice.

•	 The	script	uses	a	function	named	to_
gb for printing each report line. Bash
requires that functions be defined be-
fore they are used, so functions are
typically stored in external files and
invoked with the dot command in-
clude-file mechanism. The function is
stored in functions.bash.

This to_gb function is shown in Listing
7. The function begins by defining some
local variables. The function will ignore
any meaning the names might have in
the calling script, and their values will
also not be carried back into the calling
script. The bulk of the function consists
of arithmetic operations, using $((...)).
Bash provides only integer arithmetic,
but I want to display a reasonably accu-
rate size total in gigabytes, so I use a
standard trick to extract the integer and
remainder parts of the gigabyte value
and build the display manually. For ex-
ample, if I have 2987MB, dividing again
by 1024 would yield 2GB. So instead, I
divide 2987 by 1000 (D1=2) and then
compute 2987 – (2*1000) (D2=987).
Then, I print D1, a decimal point, and
then the first character of D2: 2.9.

The printf command is used to con-
struct formatted output. It requires a for-
mat string followed by variables to be
printed. Code letters preceded by percent
signs with the format string indicate
where the variable contents goes. In this
case, %s indicates each location and in-
dicates that the variable should be
printed as a character string. The \t and
\n within the format string correspond
to a tab and a newline character, respec-
tively. You must include the latter explic-
itly when you want the line to end.

Here is some sample output from this
script:

01 #!/bin/bash

02

03 PATH=/bin:/usr/bin # set the path

04 . /usr/local/sbin/functions.bash # . f => include file f here

05

06 printf "USER\tGB USED\n" # print report header line

07 for WHO in $(</usr/local/sbin/ckusers); do

08 HOMESUM=`eval du ‑s ~$WHO | awk '{print $1}'`

09 TMPLIST=$(ls ‑lR ‑‑block‑size 1024 $(</usr/local/bin/ckdirs) |

10 egrep "^.......... +[0‑9]+ $WHO" | awk '{print $5}')

11 TSUM=0

12 for N in $TMPLIST; do

13 TSUM=$(($TSUM+$N))

14 done

15 TOT=$(($HOMESUM+$TSUM))

16 to_gb $WHO $TOT

17 done

Listing 6: Reporting on Disk Space

Bash scriptingAutomAtIon

94 Linux SheLL hAndbook

090-095_scripting_SE10.indd 94 02/08/11 6:23:17 PM

USER GB USED

aeleen 80.5

kyrre 14.3

munin 0.3

Listing 8, which computes factorials, il-
lustrates a kind of for loop similar to that
found in many programming languages
(the syntax is quite similar to C).

The for syntax supplies a loop vari-
able, along with its starting value, a
loop-continuing condition, and an ex-
pression indicating how the variable
should be modified after each loop itera-
tion. Here the loop is over the variable I,
whose starting value is the first script
variable. At the end of each iteration, the
value of I is decreased by 1 (I++ would
similarly increment I), and the loop con-
tinues as long as I is greater than 1. The
body of the loop multiplies F (set to 1
initially) by each successive I. The script
ends by printing the final result:

$./fact 6

6! = 720

Generating menus
The final script illustrates Bash’s built-in
menu generation capability via its select
command (Listing 9). Setup for the select
command happens in the definitions of
PKGS and MENU. The select command
requires a list of items as its second ar-
gument, and MENU will serve that pur-
pose. It is defined via a command substi-
tution construct. Here, I add the literal
string Done to the end of the list.

The definition of PKGS introduces a
new feature: arrays. An array is a data
structure containing multiple items that
can be referenced by an index. The fol-
lowing defines and uses a simple array:

$ a=(1 2 3 4 5)

$ echo ${a[2]}

3

An array can be defined by enclosing its
elements in parentheses. Specific array
elements are specified using the syntax
in the second line: The array name is in-
side the curly braces, and the desired el-
ement is specified in square brackets.
Note that element numbering begins at
0. Under normal circumstances, the
number of elements in an array is given
by ${#a[@]}. PKGS is defined as an
array consisting of the second field in
each line in the file.

The select command uses the contents
of MENU as its list. It will construct a
numbered text menu from the list items
and then prompt the user for a selection.
The item selected is returned in the vari-
able specified before in (here WHAT),
and the item number is returned in the
variable REPLY.

The script will use the value of REPLY
minus 1 to retrieve the corresponding
package name from the PKGS array in
the variable PICKED (I use $REPLY‑1, be-
cause menu numbering begins at 1, al-
though array element numbering begins
at 0). The select command exits when
the user picks the Done item.

The following is an example run of
this script:

1) CD/MP3_Player 3) Photo_Album

2) Spider_Solitaire 4) Done

#? 2

Installing package spider ... U

 Please be patient!

many more messages ...

#? 4

Conclusion
See the table titled “Bash Scripting Quick
Summary” for a quick reference on Bash
scripting terms. I hope you have enjoyed
this foray into the world of Bash script-
ing. You can use these techniques to
build your own Bash scripts for automat-
ing common tasks. Have a good time
with further explorations. n

01 to_gb()

02 {

03 # arguments: user usage‑in‑KB

04

05 local MB D1 D2 USER # local variables

06 USER=$1

07 MB=$(($2/1024)) # convert to approx. MB

08 D1=$(($MB/1000)) # extract integer GBs

09 D2=$(($MB‑($D1*1000))) # compute remainder

10

11 # display abcd MB as: a.bcd GB

12 printf "%s\t%s\n" $USER $D1.${D2:0:1}

13 return

14 }

Listing 7: to_gb

01 #!/bin/bash

02

03 PATH=/bin:/usr/bin

04 PFILE=/usr/local/sbin/userpkgs # entry format: pkgname menu_item

05

06 PKGS=($(cat $PFILE | awk '{print $1}')) # array of package names

07 MENU="$(cat $PFILE | awk '{print $2}') Done" # list of menu items

08

09 select WHAT in $MENU; do

10 if [$WHAT = "Done"]; then exit; fi

11 I=$(($REPLY‑1))

12 PICKED=${PKGS[$I]}

13 echo Installing package $PICKED ... Please be patient!

14 additional commands to install the package

15 done

Listing 9: Generating Menus

01 #!/bin/bash

02

03 F=1

04 for ((I=$1 ; I>1 ; I‑‑)); do

05 F=$(($F*$I))

06 done

07 echo $1'! = '$F

08 exit 0

Listing 8: Factorial Script

AutomAtIonBash scripting

95Linux SheLL hAndbook

090-095_scripting_SE10.indd 95 02/08/11 6:23:17 PM

