>
=
S
L
=
"
o
L
2
=+
&
=
N
w
=
E

Secure connections with SSH

TUNNEL BUILDER

SSH Tool COMMUNICATION

Whether you need an encrypted tunnel between multiple PCs or graphical applications over a LAN, the all-

purpose SSH tool leaves little to be desired. BY JORG HARMUTH

elnet is probably the best known
I solution for providing users with

console access to remote ma-
chines. However convenient this dino-
saur of network communication might
be, it has a major disadvantage: All the
data are sent in plaintext over the wire.
If an attacker sniffs the connection, he or
she will quickly learn the administrative
password for the server. Admittedly, it
probably isn’t quite that easy, but the
danger is there all the same. For this rea-
son, all popular Linux distributions in-
stall the Secure Shell (SSH) as a safer al-
ternative.

SSH’s configuration files are located in
/etc/ssh, where you will find one file for
the server (sshd_config) and another for
the client (ssh_config). The files contain
a huge number of options, which are ex-

plained in detail in the man pages. Users
don’t typically need to make any major
changes. The defaults used by openSUSE
11.0 are user friendly but still secure
enough not to make additional configu-
ration worthwhile.

How It Works
The SSH client/server architecture is
based on TCP/IP. The SSH server (sshd)
runs on one machine, where it listens for
incoming connec-

happen in the background. First, the
server and client negotiate the SSH pro-
tocol version to use for the communica-
tions. Currently, SSH 1 and SSH 2 are
available, but SSH 2 is standard today
because of its better security. Details -
including details of encryption - are
given in the “SSH Protocol Versions”
box.

Second, the server and client negotiate
the algorithm, followed by the key that

debian:~# ssh sector

tions on TCP port
22. The client sim-
ply uses this port to
connect to the
Server.

When a connec-

Password:

secTor: ~

The authenticity of host 'sector (182.188.10.108)' can't be established.

RSA key fingerprint 1s 81:00:6e:dc:49:el:5b:1d:76:85:8¢:a4:55:91:0d:29.

Are you sure you want to continue connmecting (yes/nol? vy

Please type 'yes' or 'no': yes

Warning: Permanently added 'sector,192.168.19.180' (RSA) to the list of known host

Last Login: Tue Sep 27 14:45:53 2005 from 152.1688.10.254
Loading fusr/share/keymaps/1386/qwertz/de-latinl-nodeadkeys.kmap.gz

tion is established,

quite a few things machine.

LINUX SHELL HANDBOOK

Figure 1: On initial login, SSH imports the host key from the remote

75

debian:~# ssh sector

T then accept the

@ WARNING: REMOTE HOST IDEWTIFICATION HAS CHAWNGED!

8 new key after

51:00:6e:dc:49:el:5h:1d:76:86:8c:a4:55:91:0d:29.
Please contact your system adminlstrator.

of fending key in sroot/.sshsknown_hosts:1

Host key werification failed.
debian:~# [

IT IS POSSIBELE THAT SOMEOME IS DOING SOMETHING MNASTY!

Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It 15 also possible that the RSA host key has just been changed.

The fingerprint for the RSA key sent by the remote host 1s

add correct host key in froots.sshy/known_hosts to get rid of this message.

RS4 host key for sector has changed and you have reguested strict checking.

contacting the ad-
ministrator on the
remote machine.
To configure this
behavior, use the
StrictHostKey-

8 Checking variable

Figure 2: If the host key changes, the SSH client will refuse to connect.

both will use for the data transfer. The
key is used once only for the current
communication session, and both ends
destroy it when the connection is bro-
ken. For extended sessions, the key will
change at regular intervals with one
hour being the default.

Initial Login

The easiest approach is to log in using
the classic username/password method.
The SSH client will automatically use
your username as the login name on the
remote machine. The first time you log
in, the client will not know the server’s
host key and will prompt you to confirm
that you really do want to set up a con-
nection with the remote machine. The
program waits for you to confirm before
generating the fingerprint (Figure 1).

If you want to check the key finger-
print, contact the administrator of the re-
mote machine. This prevents man-in-
the-middle attacks, wherein an attacker
reroutes network traffic to his own ma-
chine while spoofing a genuine login to
your machine.

If you confirm the security prompt and
enter your password in such a case, the
attacker will then own your password;
thus, some caution is recommended. If
the host key changes, the client will re-
fuse to connect when you log in later.
Figure 2 shows the output from the SSH
client.

The only thing that will help here is to
remove the offending fingerprint from
your $HOME/.ssh./known_hosts file and

ng 1: Running Commands on the

Remote Machine

01 jha@scotti:~$ ssh sector "ls -1"
02 Password:

03 insgesamt 52

in ssh_config.

If you do not
want to use your current account name
to log in to the remote machine but have
a different account name, the -1 login_
name option can help you. For example,
the command line ssh -I tuppes sector
will log you into the remote machine as
the user tuppes. SSH also accepts the fol-
lowing syntax: ssh tuppes@sector. To
run a single command on the remote
machine, you simply append it to the
command line (Listing 1).

If you get tired of typing your pass-
word, public key authentication gives
you an alternative approach. This uses
encryption methods such as those used
by GnuPG. Before you can use the public
key approach, you first need to run ssh-
keygen to generate a pair of keys: ssh-
keygen -b 1024 -t rsa. The software will
tell you that it has created a keypair with
a public key and a private key on the
basis of the RSA approach. When
prompted to enter a password, press
Enter twice. The program will then tell
you where it has stored the data and will
display the fingerprint for the new key.

In the example here, the software gen-
erated an RSA keypair (the -t rsa option)
with a length of 1024 bits (the -b 1024
option). An RSA key is fine for use with
both protocol versions. For security rea-
sons, the key length should not be less
than 1024 bits. To be absolutely safe you
can use a key length of 2048 bits: 2048-
bit keys are regarded as safe until the
year 2020 based on the current state of
the art. The key length has no influence
on the data transfer speed because the
program does not
use this key to en-
crypt the data.

The next step is

COMMUNICATION SSH Tool

to copy the public key to the $HOME/
.ssh/ authorized_keys file on the remote
machine from, for example, a floppy
disk:

mount /media/floppy

cat /media/floppy/id.rsa.pub >> 2
$HOME/ . ssh/authorized_keys

umount /media/floppy

Certainly you should avoid transferring
the key by an insecure method, such as
email or FTP. Figure 3 shows the fairly
unspectacular login with the new key.

Passwords protect keys for interactive
sessions; otherwise, anybody with physi-
cal access to your computer could use
your keys to log in to the remote ma-
chine. Key-based, password-free logins
are often used to automate copying of
files to remote machines.

For example, if you back up your data
every evening and would like to auto-
matically copy your data to a remote ma-
chine, keys without passwords are a use-
ful approach. If the key was password
protected, you would need to enter the
password for the SSH key to copy the
data - so much for automated copying.

Useful Freebies
The SSH package includes two more use-
ful programs: Secure Copy (scp) and Se-
cure FTP (sftp). As the names suggest,
these programs are used to copy and
transfer files by FTP via SSH. The basic
syntax for the two programs is similar.
For example, the following command
copies a file named test.txt from your
home directory on the remote machine
to your current working directory:

scp RemoteComputer:test.txt .

Depending on your authentication
method, you might need to enter your
password to do this; however, the colon
is mandatory in all cases. It separates the
name of the remote machine from the
pathname. Also, you need to specify the
local path. The easiest case is your cur-
rent working directory, which is repre-
sented by the dot at the end of the line.
If you want to

debian:~# ssh sector

secToR:~3]

& .
Last login: Wed Sep 28 13:36:22 2005 from 192.168.10.254 i‘ copy multiple

files, just type

04 Drwxr-xr-x 3 tuppes users 4096 2005-08-26 12:38

Figure 3: Public key authentication makes the login

05 Drwxr-xr-x 16 root root 4096 2005-09-07 13:47 ..

06 -rw-rw-r-- 1 tuppes users 266 2005-04-12 12:00 .alias

76

more user friendly by removing the password

prompt.

LINUX SHELL HANDBOOK

a blank-delim-
ited list of the
file names:

debian:~# netstat -tlpn | grep 23 | grep ssh

tep o 0 127.0.0.1:23
teps o D 1::22
tcps o O ::1:23

debian:~# netstat -tpn | grep ssh
tcp o] @ 182.168.10. 254: 32750
debian: ~# I

=
0.0.0.0:* LISTEM 3311/ssh
8§82 LISTEM 2364/sshd
8 882 LISTEM 3311/ssh
192.168.10.100: 22 ESTABLISHED2311/s5h

Figure 4: The netstat program showing an existing SSH tunnel.

scp RemoteComputerA:testl.txt 2
RemoteComputerB:test2.txt .

If you use the standard login approach,
the client will prompt you to enter your
password for each file you copy. If you
use the public key method discussed
previously, there is no need to type a
password. The command scp Remote-
ComputerA:test.txt RemoteComputerB:
copies the file from remote computer A
to remote computer B. To copy a file as
the user tuppes from /home/tuppes/files
to your local directory, type:

scp 2
tuppes@RemoteComputer: files/test.txt .

Unlike SSH, you do not specify the -1
username option here. If you are copying
in the other direction - from local to re-
mote - the procedure is just as easy:

scp ./test.txt tuppes@?

RemoteComputer: /files/

scp copies the test.txt file from your cur-
rent working directory to /home/tup-
pes/files on the remote machine. Again,
watch out for the closing colon.

Sftp uses the same command structure
as scp but has two operating modes: an
interactive mode, like the one you might
be familiar with from FTP, and a batch
mode. To use sftp to retrieve the sample
file from the remote machine in batch
mode, type the following:

sftp RemoteComputer:test.txt .

If you type sftp RemoteComputer:test.txt
remote_test.txt, the program will rename
the local copy of the file to remote_test.
txt. Typing sftp RemoteComputer opens
an interactive, encrypted FTP session on
the remote machine, and the server will
accept FTP commands such as GET or
PUT in the session.

Building Tunnels

SSH also lets you encapsulate other pro-
tocols. For example, you can run the tel-

net protocol over an encrypted SSH con-
nection - and do it transparently for
users. The technical term for encapsulat-
ing one protocol inside another is tun-
neling.

The standard specifies that programs
must be running on the same machine
to use the tunnel. If you want to let other
machines on the network use the tunnel,
you must specify -o GatewayPorts = yes
when setting up the tunnel. The alterna-
tive approach is to set the option in the
ssh_config configuration file.

This setup is similar to a VPN (Virtual
Private Network) connection but is eas-
ier to implement. The SSH variant has
the disadvantage that you can only for-
ward a single TCP port. Thus, you need
an SSH tunnel for each port you want to
forward. If you want to encrypt all com-
munications between two machines, a
VPN is probably a better choice.

Any user can set up a tunnel, although
tunnels for privileged ports (i.e., ports
below 1024) are reserved for root. To
open a tunnel to a remote machine en-
capsulating the telnet protocol (port 23),
enter the following:

ssh -c blowfish -L 2

23:RemoteBox:23 RemoteBox

The command uses the -L option to open
a tunnel from local port 23 on the local
machine (the first 23) to port 23 on the
remote machine. The fast Blowfish
method is used for encryption. If you
type two remote machine names, you
can take advantage of another of SSH’s
features: the ability to build a tunnel that
opens a tunnel from the first machine,
via the second, to a third. The following
command

ssh -L 23:192.168.1.1:23 192.168.20.5

starts the tunnel on the local machine,
and routes it by way of an intermediate
station (192.168.1.1) to its endpoint. The
generic syntax for opening a tunnel from
the local machine to the remote com-
puter is thus: ssh -L LocalPort:Remote-

OUT NOW!

UBUNTU USER
MAGAZINE

is the first print magazine createc
specifically for Ubuntu users.

Ease into Ubuntu with the helpful
Discovery Guide!

Advance your skills with
in-depth technical
articles, HOW-TOs,
reviews, tutorials,

and much more!

Also includes free Ubuntu
”Karmic Koala“ DVD!

" EXPLORING THE WORLD OF UB

GET KARMIC.

What's new in Ubuntu

Package Management Uncluttered: ~
Exploring the spiffy new Software _

Center
Easy coding in Ruby
Stay in sync with Ubuntu One

10 TERRIFIC FIREFOX PLUGINS

Polish your photos with GIMIP scripts
Go remote! Admin from anywhere P
3 cool backup tools -
Protecting your personal data

DISCOVERY GUIDE

Our handy HowTo includgs
3 new articles on filesha.nng,

Find out more on
ubuntu-user.com

COMMUNICATION SSH Tool

harmuth@debian:~$ ssh sector

Last login: Wed Sep 28 16:42:42 2005 from 182.168.10.254 on ttyp3
Linux SECTOR 2.4.31 #1 SMP Do Aug 4 14:24:58 CEST 2005 1586 unknown
[Vou have mail.

Last login: wWed Sep 28 16:42:52 2005 from 192.168.10.254
harmuth@SECTOR: ~§ xclock &

[1] sess

harmuth@SECTOR: ~§ echo $DISPLAY

localhost:1l.0

harmuth@SECTCOR: ~§ ps aux | grep xclock | grep -v grep
harmuth 8056 1.0 0.3 5280 3308 ttyp3 s 16:43
harmuth@SECTOR: ~§ su -

Password:

SECTOR: ~% netstat -tpn | grep xclock
tcp] 0 127.0.0.1:52503

0:00 xclo

127.0.0.1:6011

sEcToR: ~$]

Figure 5: A forwarded X11 connection - the Xcloc
remote machine.

ComputerA:RemotePort RemoteComput-
erB. For a direct tunnel, the two host
designations are identical.

Tunnel Tricks

In Figure 4, the netstat command dem-
onstrates that I really have set up a tel-
net connection via SSH. The first netstat
command tells me that an SSH process
with a process ID of 3311 is listening on
port 23. The second command shows
that a connection to port 22 with pre-
cisely this PID (3311) exists.

If you were to look more closely at the
syntax used to open a tunnel, you might

SSH Protocol Versions

The current versions of SSH are 1.3, 1.5,
and 2. Compared with version 2, the capa-
bilities offered by version 1 are fairly lim-
ited — especially the choice of encryption
algorithms. The version 1 releases use the
insecure DES or the secure, but fairly slow,
Triple DES (3DES). The Blowfish algorithm
provides a fast and — so far — secure en-
cryption technology. Version 2 includes
the AES algorithm and others.

Another issue that affects version 1 is that
vulnerabilities in the protocol make it the-
oretically possible to hack the encryption.
Compared with version 1, version 2 is
slower, which is noticeable if you need to
transfer larger volumes of data. Version 1
relies on a key generated client side when
negotiating the key. The server sends its
public key to the client, which then gener-
ates a 256-bit random number, encrypts
the number with the server’s public key,
and returns the results to the server.

The data stream is then encrypted with the
random number generated by this
method. If a sniffer is listening in on this
communication, he or she will then own

be led to assume
that the local and
remote ports do not
need to be identical
- and this is true.
Assuming the re-
mote machine is
running a proxy
configured for
transparent proxy-
ing on port 3128,
you could redirect
all HTTP requests
in the following
way:

ck

VERBUNMDEM 8058/ xclock

k is running on a

ssh -o GatewayPorts=2
yes -L 80:RemoteComputer:?
3128 RemoteComputer

This process of redirecting one port to
another is known as port forwarding. In
order for other computers on the net-
work to use the tunnel, the use of the

-0 GatewayPorts = yes parameter is re-
quired.

In a similar fashion, tunneling works
in the reverse direction. The following
syntax allows you to set up a return tun-
nel from the remote machine to your
local computer:

the (encrypted) key. Brute force will then
give the attacker the plaintext key, al-
though this typically takes several years.

Protocol version 2 relies on a Diffie-Hell-
man exchange that never transmits the

key over the wire. The server and client

simply exchange data that put them in a
position to generate the same key inde-

pendently of one another.

It won't help an attackers to sniff this data
because they will not have the values they
need to calculate the key. This approach to
generating the key is far more secure be-
cause neither of the two communication
partners defines the key.

Other enhancements to version 2 include
the software'’s ability to check the data in-
tegrity using cryptographic hashes (the
Message Authentication Code method)
rather than the unreliable CRC (Cyclic Re-
dundancy Check) method. Support for
multiplexing is also improved. Both ends
seem to transfer data simultaneously.

All of the examples in this article use SSH
2, although some of them will also work
with version 1.

78

LINUX SHELL HANDBOOK

ssh -R RemotePort:LocalComputer:2

LocalPort RemoteComputer
In my proxy example, this would be:

ssh -o GatewayPorts=yes 2
-R 3128:LocalComputer:80 2

RemoteComputer

Graphical Tunnels

The X Window System is natively net-
work-capable, but almost nobody uses
this ability because communications are
again unencrypted over the wire. Tun-
neling with SSH makes this a far more
attractive proposal.

To tunnel X11, the SSH daemon (sshd)
emulates an X server and occupies a dis-
play (number 11 by default). When you
log in to the server, the server sets the
DISPLAY environmental variable to this
value, or to localhost:11.0 to be more
precise. The idea is to avoid collisions
with the X server running locally. Infor-
mation sent by a computer to this dis-
play is encrypted and sent to your ma-
chine.

OpenSUSE 11.0 enables X11 forward-
ing (the technical term for the process I
just described) by default. If needed, you
can disable X11 forwarding on the ma-
chine configured for forwarding by set-
ting the X11Forwarding variable to no in
etc/ssh/sshd_config. The X11DisplayOff-
set variable with a default value of 10 de-
fines the distance between the virtual
display and the physical display; you
should keep the default here.

If the machine on which you want to
display tunneled X11 is an openSUSE
11.0 machine, the etc/ssh/ssh_config file
will already have the ForwardX11 Trusted
variable set to yes. This completes the
configuration work.

Next, log in to the remote machine
and launch, for example, the Xclock pro-
gram. Figure 5 shows the display (local-
host:11.0), the process, and the matching
network connections.

Conclusions

The SSH package includes a collection of
important programs that make working
on networks far more secure. The fea-
ture scope covers anything from basic
encrypted connections, through tunnel-
ing and port forwarding, to X11 forward-
ing, leaving very little to be desired in
daily use. ®

