
B
ackup is crucial, especially
when you are traveling. This is
particularly true for photos: To
keep your snaps safe, you ought

to have at least one backup set of your
precious photos. That’s why a light, flex-
ible, and inexpensive backup tool can be
an indispensable tool in your travel bag.
Several backup solutions are available
on the market, but with a Raspberry Pi,
you can build your own backup device
and learn a few useful tricks and skills in
the process.

Required Components
To begin, you will need a Raspberry Pi
along with the Raspbian Linux distro in-
stalled on an SD card. Although you can

use a standard micro-USB charger to
power Raspberry Pi, you might want to
invest in an external battery pack to
make the solution more portable. Finally,
you need a high-capacity USB key for
storing backups. In theory, you could
use a USB hard disk, but, because it
must be connected to Raspberry Pi
through a powered USB hub, this ap-
proach would make the setup unwieldy.

Going the Software Route
The easiest way to transform Raspberry
Pi into a backup device is to use the ex-
cellent gPhoto2 [1] software available in
the Raspbian software repository. To in-
stall it, you use the

sudo apt‑get install gphoto2

command. Although the older version
from the repository should do the trick,
you might want to compile the latest re-
lease of gPhoto2 from the source code
because it provides support for new
camera models along with a handful of
fixes and improvements.

Compiling from the source code can
be a daunting task, but the gphoto2-up-
dater Bash shell script automates the en-
tire process [2]. Grab the script from the
project’s GitHub repository by clicking
on the ZIP button, unpack the down-
loaded archive, make the gphoto2‑up‑
dater.sh script executable with the

chmod +x gphoto2‑updater.sh

command, then issue the

./gphoto2‑updater.sh

command to run the script.
You also need to install two additional

packages on Raspberry Pi: usbmount
and ExifTool. The former allows Rasp-
berry Pi to mount and unmount USB de-
vices automatically, whereas the latter is
necessary for processing downloaded
files. To install both packages, enter:

sudo apt‑get install usbmount U

 libimage‑exiftool‑perl

With all the pieces in place, you are
ready to proceed. The first order of busi-
ness is to write a Bash shell script that
transfers photos from the camera con-
nected to the Raspberry Pi. Run the nano

Dmitri Popov has been writing
exclusively about Linux and open source
software for many years, and his articles
have appeared in Danish, British, US,
German, Spanish, and Russian
magazines and websites. Dmitri is an
amateur photographer, and he writes
about open source photography tools on
his Scribbles and Snaps blog at
scribblesandsnaps.com.

 Dmitri Popov

Build a Raspberry Pi-based backup device

Tiny Backup Box
With some creativity and a little scripting, you can easily

turn your Raspberry Pi into an effective backup device.

By Dmitri Popov

86

LinuxUser

August 2013	 Issue 153	 linux-magazine.com | Linuxpromagazine.com	

Workspace: Pi-Based Backup

get‑all‑files.sh command to create an empty file and open it in the nano text editor,
then enter the following code:

mkdir "`date ‑‑iso‑8601`" && cd $_

gphoto2 ‑‑get‑all‑files

exiftool ‑r ‑d %Y%m%d‑%H%M%S.%%e "‑FileName<DateTimeOriginal" .

The script is not particularly complicated. First it creates a directory using the current
date in the ISO format as its name and then switches to the created folder. The script
then pulls photos from the camera with the gphoto2 ‑‑get‑all‑files command and
uses ExifTool to rename them on the basis of date and time info from Exif metadata.

Save the script and make it executable with chmod +x get‑all‑files.sh. Next, con-
nect the camera to Raspberry Pi, turn the camera on, and run the script with the com-
mand ./get‑all‑files.sh to transfer photos.

Although this simple script does the job, it’s far from ready. To run the script, you
must be able to control Raspberry Pi either directly or via an SSH connection. Ideally,
it should kick in automatically as soon as it detects the connected camera. To make
this happen, you need to add code that constantly checks for the camera and trans-
fers photos as soon as it detects it:

DEVICE=$(gphoto2 ‑‑auto‑detect | grep usb | cut ‑b 36‑42 | sed 's/,/\//')

while [‑z ${DEVICE}]

 do

 sleep 1

 DEVICE=$(gphoto2 ‑‑auto‑detect | grep usb | cut ‑b 36‑42 | sed 's/,/\//')

done

By default, the script performs backup in the current working path (i.e., on the SD
card). If you prefer to use a USB key as a backup destination, you need to tweak the
script so it switches to the appropriate mountpoint. This is where the usbmount tool
comes into the picture: It automatically mounts a connected USB device (in this case,
the USB key) at the first available /media/usb mountpoint.

If the USB key is the only storage device connected to Raspberry Pi, usbmount
mounts it at the /media/usb0 point, so you need to add the cd /media/usb0/ command
to the script. Finally, you might want to add the halt command, so the script auto-
matically shuts down Raspberry Pi after the photos have been transferred and pro-
cessed. You can see the script in its entirety in Listing 1.

One more step is needed, which is to configure Raspberry Pi to run the script auto-
matically. To do this, open the inittab file in nano using the sudo nano /etc/inittab
command and locate the following line:

1:2345:respawn:/sbin/getty ‑‑noclear 38400 tty1

Add the ‑‑autologin pi option to it as follows and save the file:

1:2345:respawn:/sbin/getty U

 ‑‑autologin pi ‑‑noclear 38400 tty1

Next, run the nano .bash_profile com-
mand and add the sudo ./get‑all‑
files.sh line to the opened .bash_pro‑
file file. Save the changes, and you are
done. Reboot Raspberry Pi, plug in, and
turn on the camera, and the script
should do the rest.

If your Raspberry Pi is connected to the
Internet, you can modify the script to per-
form off-site backup. To do this, install
the Rsync tool on Raspberry Pi and the re-

01 �#!/bin/bash

02 �DEVICE=$(gphoto2 ‑‑auto‑detect | grep usb | cut ‑b 36‑42 | sed 's/,/\//')

03 �while [‑z ${DEVICE}]

04 � do

05 � sleep 1

06 � DEVICE=$(gphoto2 ‑‑auto‑detect | grep usb | cut ‑b 36‑42 | sed 's/,/\//')

07 �done

08 �cd /media/usb0/

09 �mkdir "`date ‑‑iso‑8601`" && cd $_

10 �gphoto2 ‑‑get‑all‑files

11 �exiftool ‑r ‑d %Y%m%d‑%H%M%S.%%e "‑FileName<DateTimeOriginal" .

12 �halt

Listing 1: get-all-files.sh Shell Script

87

LinuxUser
Workspace: Pi-Based Backup

linux-magazine.com | Linuxpromagazine.com	 Issue 153	 August 2013

mote backup server. Next, you need to configure a passwordless SSH login for the re-
mote server. On Raspberry Pi, run the following command to generate a key pair:

ssh-keygen ‑t dsa

Don’t enter any password when prompted, and confirm the default choices by press-
ing the Enter key. Then, copy the generated public key to the remote server using the
command below (replace <user> with the actual user name and <remotehost> with the
IP address or domain name of the remote server):

ssh‑copy‑id ‑i .ssh/id_dsa.pub <user>@<remotehost>

Finally, add the following command to the get‑all‑files.sh script:

rsync ‑avhe ssh ‑‑delete /<path/to/source/dir> <user>@<remotehost>:/<path/to/target/dir>

Don’t forget to replace the placeholders with actual paths.
When running on its own, Raspberry Pi provides practically no feedback, so you

might have trouble telling when the script is done. Of course, Raspberry Pi shuts
down automatically after the backup has been performed, but figuring out whether
the device is still running can be tricky. One way to solve this problem is to tweak the
script, so it plays an MP3 file before issuing the halt command.

To add this functionality, you can install the mpg123 player with the sudo apt‑get
install mpg123 command. Next, insert the mpg123 sound.mp3 line before the halt com-
mand in the get‑all‑files.sh script (replace sound.mp3 with the actual name of the
sound file). Plug earphones or a speaker into Raspberry Pi’s audio jack, and you
should hear the sound before the system shuts down.

Adding Some Hardware
The backup solution described above does the trick, but it can be improved even fur-

ther. For example, you can add buttons to trigger the backup
script and shut down Raspberry Pi, and you can install an LED
for visual feedback. All of this is possible thanks to Raspberry
Pi’s GPIO pins, which can control a variety of inputs and out-
puts. For this project, you’ll need a few additional components,
including a breadboard, a handful of jumper wires (both male-
male and female-male), two 10K resistors and a single 10-ohm
resistor, two push buttons, and an LED.

Start by wiring the components as shown in Figure 1. Two
separate circuits contain a pull-up 10K resistor and a push but-
ton connected to pins 17 and 23 and a circuit with a 68-ohm re-
sistor and an LED connected to pin 25. Next, you can install
the RPi.GPIO Python module using the sudo apt‑get install
python‑dev python‑rpi.gpio command. Before you start work-
ing on a Python script that reads GPIO inputs and performs the
required actions, you should write a simple Bash shell script
that does the actual backup:

#!/bin/bash

mkdir "`date ‑‑iso‑8601`" && cd $_

gphoto2 ‑‑get‑all‑files ‑‑filename

exiftool ‑r ‑d %Y%m%d‑%H%M%S.%%e "‑FileName<DateTimeOriginal" .

Save the script under the get‑all‑files.sh name. Now you can
use the code in Listing 2 to create a Python script that does sev-
eral things. First, it initializes pins 17 and 23 for input and pin
25 for output; then, it enables pin 25, thus turning on the LED
(this indicates that the script is running and ready to accept
user input). The script then waits for input on pins 17 and 23. Figure 1: Wiring diagram.

88

LinuxUser
Workspace: Pi-Based Backup

August 2013	 Issue 153	 linux-magazine.com | Linuxpromagazine.com	

When the user presses the push button wired to pin 17, this triggers the os.system​
('./get‑all‑files.sh') call, which executes the Bash shell backup script and turns
off the LED. When the script detects a signal on pin 25, it shuts down the system.

Save the script under the fetch.py name and make it executable using the

chmod +x fetch.py

command. Then, run the nano .bash_profile command and replace the sudo ./get‑​
all‑files.sh entry added previously with sudo ./fetch.py. Save the changes, reboot
Raspberry Pi, and wait until the LED turns on. Plug in and turn on the camera, and
press the first push button to perform backup (Figure 2). When the LED turns off,
press the second push button to shut down the system.

Final Word
I’ve described two ways to
transform a Raspberry Pi
into a backup device. With
some creative thinking
and hacking, you can eas-
ily tweak and improve the
described recipes, for ex-
ample, by writing a script
that processes the trans-
ferred photos and pub-
lishes them on the web.
Also, you can configure
Raspberry Pi to send email
notification when the
backup operation has
completed. All code and
files mentioned in this ar-
ticle ares available on
GitHub [3]. nnn

01 �#!/usr/bin/env python

02 �from time import sleep

03 �import os

04 �import RPi.GPIO as GPIO

05 �GPIO.setmode(GPIO.BCM)

06 �GPIO.setwarnings(False)

07 �GPIO.setup(17, GPIO.IN)

08 �GPIO.setup(23, GPIO.IN)

09 �GPIO.setup(25, GPIO.OUT)

10 �GPIO.output(25, True)

11 �while True:

12 � if (GPIO.input(17) == False):

13 � os.system('./get‑all‑files.sh')

14 � GPIO.output(25, False)

15 � if (GPIO.input(23) == False):

16 � os.system('sudo halt')

17 � sleep(0.1);

Listing 2: fetch.py Python Script

[1]	� gPhoto2: gphoto.​sourceforge.​net

[2]	� gphoto2-updater Bash shell script:
github.​com/​dmpop/​gphoto2‑updater

[3]	� Code and files from the article:
github.​com/​dmpop/​rpi‑photo

Info

Figure 2: Raspberry Pi photo backup prototype in action.

89

LinuxUser
Workspace: Pi-Based Backup

linux-magazine.com | Linuxpromagazine.com	 Issue 153	 August 2013

