
In June 2009, a virtualization product
aimed at web servers was found to
have a few security vulnerabilities.

The end result was that about 100,000
web sites got hacked and deleted at a
number of different providers. (It’s not
clear how many were recovered.) Also in
June, the security-related website astala-

vista.com was hacked, and a variety of
files and databases, as well as the re-
mote backups, were deleted. These were
only the “big” hacks that were newswor-
thy, the actual number of websites and
servers compromised is much higher.

The techniques for network attacks
keep evolving. In this article, I take a

look at some favorite strategies for the
latest generation of intruders.

A Quick Legal Disclaimer
Please note that engaging in the kinds of
activities described in this article can po-
tentially get you into trouble, ranging
from a stern talking to by your network
administrator to a less-than-enjoyable,
all-expenses-paid vacation courtesy of
whichever law enforcement agency you
manage to annoy the most. So why am I
writing this? If you want to build and
maintain secure systems, you need to

You need to think like an attacker to keep your network safe. We asked

security columnist Kurt Seifried for an inside look at the art of intrusion.

By Kurt Seifried

A guided tour to someone else’s network

Breaking In
K

o
n

sta
n
tin

os K
o
kkin

is, 12
3

R
F

Intrusion 101Cover story

20 ISSUE 106 September 2009

understand how to make them fail. If
you want to buy a good lock, you either
have to buy a bunch of locks and learn
how they work or find someone who has
[1]. My advice is to get a cheap quad-
core machine with lots of RAM, put Vir-
tualBox or VMware on it, and build sys-
tems and networks you can attack with-
out disturbing anyone else.

A Brief History
Life used to be pretty simple. You had a
server, and on it you ran a couple of ser-
vices (mail, file, DNS, etc.). If users

wanted an application, you
installed it on their machines.
If users wanted to edit or up-
load content remotely to the
web, you gave them FTP ac-
cess. Email was just text, PDF
files didn’t include JavaScript,
and image files were just image files –
they weren’t executable content. To se-
cure your network, you simply kept
things up to date, firewalled access, and
ran as many services as possible without
root access.

On Brute Force Attacks
Some automated tools simply hammer
away, attempting a variety of common
exploits against any server they can con-
nect to, giving up speed and sophistica-
tion for brute force. This often works be-
cause of the sheer number of web serv-
ers and applications and, more impor-
tantly, because of the number of out-of-
date applications with well-known secu-
rity flaws (witness Adobe taking several
weeks to months to fix various vulnera-
bilities in their Reader product). Some
studies put the percentage of abandoned
web logs at 95%, and, if no one is updat-
ing them with content, the chances are
that no one is updating them for security
fixes [2].

Step 1: Reconnaissance
Strictly speaking, reconnaissance isn’t
always necessary, but learning about the
company’s network layout, organiza-
tional structure, and personnel can aid
in other attacks. Finding the domain
name for a company or organization
usually just means sticking .com (or a
top-level national domain) on the end of
the company name, and if that doesn’t
work, just ask Google. Once you have
the domain name, you can learn a lot
about the company or organization with
tools like whois. Intruders look for tech-
nical details, like where the company’s
domain name servers are located and
whether or not the
technical manage-
ment of the com-
pany is competent.
(If an organization
can’t set up DNS
competently,
chances are their
security isn’t very
good.) A perfect

example of this is seifried.​org, which I
host on a VPS server. Unfortunately, the
control panel is so brain dead it sets up
the DNS server to allow remote zone
transfers. Therefore, the dig ‑t axfr com-
mand lets you download entire DNS
zones, finding all the hosts in seconds
(Figure 1).

If zone transfers aren’t allowed, an-
other way to find web hosts is to use the
site: search keyword in Google, filtering
out www.​example.​org and so on in the
search terms. This, of course, can be
combined with a variety of interesting
search terms such as user name:, login:,
password:, reset password, and so on to
find login screens. Google (and other
search engines) can also provide infor-
mation such as corporate phone num-
bers, lists of executives, corporate struc-
ture diagrams, and employee listings
(Figure 2).

So the attacker has figured out where
you live (metaphorically or literally),
now what happens?

Step 2: Load Balancers,
IPSs, and Firewalls
One of the first problems attackers will
often run into is sites using load balanc-
ers, firewalls, intrusion prevention sys-
tems (IPSs), and web application fire-
walls (WAFs). If you try attacking a site
behind a load balancer, the first part of
your attack might go to server A, and the
second part of your attack ends up at
server B, resulting in a failed attack.
Likewise, if a site is using a firewall, IPS,
or WAF, it might detect and block the at-
tacks (assuming it works).

How can you detect these devices and
bypass their protective measures? Load

A guided tour to someone else’s network

Breaking In

Figure 2: Output of some interesting Google searches.

Figure 1: Output of dig ‑t axfr for seifried.org.

Cover storyIntrusion 101

21ISSUE 106September 2009

balancers are generally not built or de-
ployed with stealth in mind. If a site is
using DNS to load balance, tools such as
dig will show them easily. If you get
more than one IP or the IP changes,
they’re probably using DNS-based load
balancing. Alternatively, tools such as
Nmap can identify load balancers by
their TCP-IP fingerprints (since almost
no two TCP-IP–capable devices behave
the exact same way). Detecting Firewalls
and WAFs is also simple; just send a
well-known attack using a remote host
or an anonymous proxy such as Tor and
see if the connection is terminated or if
future connection attempts are blocked.
If you really want to learn how the pro-
fessionals do this, check out the DojoSec
presentation by Joseph McCray [3][4].

Bypassing the devices blocking entry
to the network is certainly possible. In
the case of a DNS-based load balancer,
simply using the IP address rather than
the DNS name in an attack will ensure
that all the attacks go to the same sys-
tem. Bypassing firewalls is also relatively
trivial because pretty much all firewalls
allow incoming email and web traffic.
The same goes for IPS and WAF systems;
most sites are terrified of blocking legiti-
mate web traffic and email, so they typi-
cally reduce the sensitivity of these sys-
tems, which reduces their effectiveness.

Web 2.0 and Modern Email
In the past, web pages and email were
much the same: static text with minimal
formatting and not much in the way of
executable content. The pendulum has
now swung the other way; most email
clients support text and HTML, as well
as file attachments. HTML, as you know,
supports any number of executable tech-
nologies, the most popular being
JavaScript. Almost everything now sup-
ports JavaScript (web browsers, email
clients, even Adobe Reader), which
means not only do you have to worry
about buffer overflows and integer over-
flows in images, you often have a fully
fledged Turing machine embedded in
many applications. Because almost no-
body blocks JavaScript or disables it,
there is no better way to attack applica-
tions reliably.

Step 3: The Attack
A few common attack methods work re-
ally well against modern networks and

users. The first is attacking exposed serv-
ers and services (like DNS), the second
is attacking web servers (which are basi-
cally application servers now), and the
last is attacking through email (which is
also the de facto file sharing application
for many people).

The first method is pretty well under-
stood; generally speaking, the attacker
will scan for vulnerable servers with a
tool such as Nmap [5][6] or Nessus [7]
and then attack them using exploit code
or toolkits like Metasploit [8]. Exploiting
these vulnerabilities will generally allow
the attacker to run hostile code, like a
root shell, on the machine.

Finding All the Attacks
So how do you track down all these indi-
vidual attacks? Given a specific software
package (e.g., Sendmail, WordPress,
DokuWiki, or MediaWiki), how do you
track down the vulnerabilities affecting
it? Your best bets are to check out the
CVE [9] and OSVDB [10] databases,
which have links to resources in each se-
curity report, and, for exploit code, Mil-
w0rm [11] (Figure 3) and PacketStorm
Security [12] (Figure 4). The Metasploit

framework actually includes surprisingly
few exploits – around 300 at last count.
PacketStorm Security carries about 300–
400 exploits a month. Chances are that if
the site is running out-of-date software,
you can find something on Milw0rm or
PacketStorm Security that will let you at-
tack it, and if not, the CVE and OSVDB
databases often contain enough informa-
tion to point you in the right direction.

Attacking Web Servers
Web servers are basically application
servers now, and where you have appli-
cations, you have security flaws. One of
the biggest problems is the complexity of
these programs. At a minimum, a
“basic” application will often include:
the application itself, a web server, an
operating system, and a back-end data-
base. All of these components can be at-
tacked through flaws in the application,
and in many cases, a number of small
flaws can be combined to allow for code
execution that lets an attacker onto the
server.

If you’re feeling lazy, you can also just
download a web application scanner and
point it at your target. Automated tools

Figure 3: Milw0rm.com – search results for SQL injection attacks.

Intrusion 101Cover story

22 ISSUE 106 September 2009

such as Nessus or like Nikto,
which looks for more than
3,500 potentially dangerous
files and CGI scripts, can scan
a server for vulnerable appli-
cations. If these tools don’t
find anything with known
vulnerabilities, the attacker
can always use tools like
WebScarab to examine and attack web
applications directly. Poking around ran-
domly often exposes interesting prob-
lems faster than you would think [13].

SQL Injection
Most web applications need to store data
locally on the server, and rather than
dealing with local files or SQLite, appli-
cations commonly use a back-end data-
base such as MySQL or PostgreSQL. Un-
fortunately, many applications do not
safely sanitize data before passing it to
an SQL query, and many do not con-
struct queries safely. Some common at-
tacks include:

name' or '1'='1

productid' and '1'='2

The first attack is commonly used
against authentication fields (e.g., user-
name or password); if not properly sani-
tized the query will look for name or '1'
= '1'; because 1=1 evaluates to TRUE
in SQL, this would potentially let the at-
tacker authenticate even without a valid
password or user name. The second at-
tack will help the intruder find out if a
query is vulnerable to SQL injection; it
will look for productid, but because 1
does not equal 2 (and thus the statement
evaluates as FALSE), the and statement
will force the SQL query to be false,
which will most likely result in an error.
In the case of a product page that should
display the results for productid, it won’t
because the SQL query is invalid or
causes an error.

Attackers love SQL injection because
they can bypass authentication alto-
gether, and depending on the database
and configuration in question, it can also
let them attack the local database server
directly. Additionally, if the web applica-
tion gets content from the database
(such as product descriptions), an at-
tacker can modify the product descrip-
tion to include PHP code (or whatever
language the web application is built in),

which is then executed the next time
that page is requested, allowing an at-
tacker to execute code on the server. For
a really complete list of tips and tricks,
check out the “SQL Injection Cheat
Sheet” [14]. For a great SQL injection
tool, check out SQLMap (now available
as an official Debian package!) [15].

Cross-Site Scripting (XSS)
Cross-site scripting is a perfect example
of why one should never mix data and
code in a single object. HTML was once
just a simple mark-up language that
didn’t involve any content executed on
the client side. Of course, this made for a
really boring web, and it wasn’t too long
before we got JavaScript from Sun and a
variety of options from Microsoft (Ac-
tiveScript, ActiveX, etc.). Now the prob-
lem is that the web browser has no way
to know what JavaScript should and
shouldn’t be present in a web page (and
whether or not the JavaScript is “bad”),
so an attacker who can insert content
can just as easily insert JavaScript,
which (usually) is executed on the client
side, unless the client user is paranoid
and has disabled JavaScript or installed
the NoScript extension.

The real beauty of XSS attacks is that
they are extremely common. You can put
hostile content and code into the website
the user is using, allowing you to steal
cookies (which usually contain authenti-
cation credentials), keystrokes, form
data, and so on – all of which can ulti-
mately lead to administrative access on
the application and more detailed at-
tacks. Also, when XSS is combined with
targeted email attacks and personal in-
formation gleaned from the web, the
chances of success-
fully tricking a user
into clicking on a
bad link go up. But
what happens when
the website has a
good web applica-
tion firewall (or per-

haps mod_security), which blocks XSS
attacks? In that case, you go with encod-
ing (UTF-8), embedding white space
(which the browser will generally ig-
nore), and adding strange characters
into the script tag (such as “/​”), to name
a few methods.

Cross-Site Request Forgery
(CSRF)
I covered cross-site request forgery in my
monthly column in December 2008 [16].
To recap briefly: If a web application
doesn’t ensure that commands sent to it
are valid, an attacker can potentially
trick a victim’s web browser into making
a request that contains commands that
the web application will execute (such
as adding a new user or changing the
permissions on an existing user). The
bad news is that many applications still
do not provide effective CSRF protection,
the simplest reason being that there re-
ally aren’t any widely accepted libraries
to deal with this problem; the fact that
people are forced to keep reinventing the
wheel has led to many broken imple-
mentations.

Http Parameter Pollution
Http Parameter Pollution (HPP) is a new
attack technique that was publicly an-
nounced only a few months ago. HPP is
so simple, I’m amazed no one caught it
sooner. When an application submits
data to a server in the form of parame-
ters, the server might not handle the sit-
uation gracefully when a parameter oc-
curs more than once. In other words, if
you put productid into the GET string
twice, you might blow up the application
(Figure 5). I love this class of vulnerabil-
ity for one simple reason: it involves in-
teractions between web servers, which
all appear to behave in strange and often
unexpected ways, and web applications
(your guess as to how they react to man-
gled parameters is as good as mine). As
far as I can see, there is no “correct” way
to handle multiple parameters. Good ar-
guments can be made for only taking the

Figure 5: Http parameter pollution with the Apache web server.

Figure 4: PacketStorm Security – description of exploit

code.

Cover storyIntrusion 101

23ISSUE 106September 2009

first one, the last one, concatenating
them together, and even passing them as
an array instead of the expected string
type. Therefore, it is unlikely that the
world will see a good long-term solution
[17].

Local File Inclusion
Most applications make use of include
files (CSS files, libraries, etc.), and often-
times they can be tricked into including
files elsewhere on the system. Browsing
the file system, especially remotely, gives
an attacker detailed information, for ex-
ample, by checking the /etc/ directory
(for configuration files), the man page
directories (for installed software and
version information), and the binary and
library directories. Because most web
applications run when requested, any
configuration information they need
must be available to them; configuration
files such as wp‑config.php, config.inc.
php, or LocalSettings.php allow attackers
to retrieve the database credentials re-
motely.

Creating Files with MySQL
If an attacker is unable to execute code
on the system but has access to the data-
base (either through SQL injection or by
harvesting credentials from a configura-
tion file), what’s the worst that can hap-
pen? Well assuming they don’t simply
wipe the database or delete large chunks
of it, they can create files on the system
by using the INTO OUTFILE SQL com-
mand. Fortunately, an attacker cannot
overwrite existing files; otherwise,
they’d be able to modify or destroy
every database on the system!

However, with the use of INTO
OUTFILE with custom-made data-
base content, an attacker can cre-
ate script files in the /tmp direc-
tory – for example:

CREATE TABLE `database`.U

`scripts` U

(`contents` TEXT NOT NULL) U

ENGINE = MYISAM

INSERT INTO `database`.U

`scripts` (`contents`) VALUES U

('#!/bin/bash\necho U

"hello world"');

SELECT * INTO OUTFILE U

"/tmp/bad.sh" from `scripts` U

WHERE 1

An attacker can even create binary files
by using the DUMPFILE command, let-
ting the attack leverage local file inclu-
sion bugs via image files or documents
containing buffer overflows.

Email-Based Attacks
So what happens if you hit a dead end
and can’t find any vulnerable services to
attack? What if the network is properly
segmented and there is no path from the
web server you have compromised to
the internal network? Go with email. Be-
cause virtually all email clients now han-
dle HTML, multimedia content, and so

on, they rely on the
underlying system li-
braries to parse this
content.

The bad news is
that virtually every
HTML rendering en-
gine (WebKit, Gecko,
Microsoft HTML Ren-
dering Engine, Micro-
soft Word, etc.) has
exploitable flaws, and
most image and mul-

timedia files also have exploitable flaws.
If you can sneak a malicious email past
the scanners, you can probably cause
code execution on the victim’s machine.

To make things even easier, you also
have the option of attaching a file that
targets any number of local programs,
currently the more popular ones are
Adobe Reader (with many JBIG2-related
vulnerabilities), Open Office, and of
course, Microsoft Office.

But don’t all sites have virus scanning
of incoming email and blocking of exe-
cutable attachments? Well, this is where
the information harvested about the tar-
get really comes in handy. If you can
find a list of the executives, or a com-
pany phone directory (which will some-
times even lists the department someone
is in), you can craft email messages that
look something like the message shown
in Figure 6.

Creating Malicious PDF
Files
The only reason I am picking on PDFs
and not some other file format (such as
TIFF, AVI, DOC, and ODT) is that, in the
last few months, a lot of easy-to-use
tools and exploits for Adobe Reader have
been released, and Reader is one of the
few applications that is almost guaran-
teed to be on a system. (If it isn’t there,
the system probably has an equally vul-
nerable program, such as Foxit). Oh, and
you can embed JavaScript into PDF files
(Figure 7) that is executed by default, al-
though you can disable JavaScript sup-
port in Acrobat Reader [18].

Didier Stevens has released a tool
called make‑pdf‑javascript.py that allows
you to embed arbitrary JavaScript into a
PDF file [19]. Fortunately, this tool
doesn’t do any obfuscation or other
tricks to hide the JavaScript, although
other tools do. However, I will leave
finding them as an exercise for the
reader).

One note: You might have to run the
script through dos2unix to fix the line
breaks, and depending on your version
of Python, there is a finally: clause in
line 63 that you might need to remove.
Just be sure to remove one tab from the
line that follows as well and it will run
fine.

Bringing It All Together for
the Win
Individually, most of these attacks won’t
get you very far. You might gain access
to a web application, read someone’s
email, or view a file on the server. But by
combining techniques, such as writing
arbitrary contents to a file and then in-
cluding that file so that the PHP code
within it is executed (Figure 8), an at-
tacker can launch local attacks, of which
there are plenty. In the first half of 2009
alone, the Linux kernel has suffered be-

Figure 7: An example of a PDF file with a

JavaScript pop-up message.

Figure 6: An example email sent 15 minutes before lunch time.

Intrusion 101Cover story

24 ISSUE 106 September 2009

cause of several locally exploitable vul-
nerabilities (ptrace_attach, udev, netlink,
and exit_notify) for which exploit code
exists publicly (just search Milw0rm for
“Linux Kernel”).

Exploiting a system via the kernel is
particularly effective because a) you
know it’s installed and b) upgrading a
Linux kernel on many web hosts is ei-
ther a complete pain or simply not possi-
ble. Once attackers have the ability to
exploit code locally, it’s only a matter of
time before they can execute code as the
root user.

Step 4: What to Do Once
You’re In
So you’ve successfully compromised a
host, executed a local attack, and gained
root access. Now what? For most attack-
ers, the answer is simple: Install a rootkit
[20] to maintain access and then keep
going. With access to internal systems
(such as file servers), an attacker can
create links to shared files, which on
Windows, for example, will be executed
with “Intranet” if it is within the same
network, thus bypassing many of the se-
curity protections.

Even if the attacker only has access to
a limited web server within your do-
main, the assailant will be able to attack
the network infrastructure (such as rout-
ers and switches) directly and spoof
email more easily. Alternatively, an at-
tacker might simply use your systems as

part of a botnet to attack other hosts and
networks, send spam, and harvest per-
sonal information. The possibilities are
endless. n

NETWAYS
®

MAGAZIN

[1]	� “Ten Things Everyone Should Know
About Lockpicking & Physical
Security” by Deviant Ollam: http://​
www.​blackhat.​com/​presentations/​
bh‑europe‑08/​Deviant_Ollam/​
Whitepaper/​bh‑eu‑08‑deviant_ol‑
lam‑WP.​pdf

[2]	� “Blogs Falling in an Empty Forest”:
http://​www.​nytimes.​com/​2009/​06/​07/​
fashion/​07blogs.​html

[3]	� DojoSec: http://​www.​dojosec.​com/

[4]	� DojoSec monthly briefings, April
2009, Joseph McCray: http://​vimeo.​
com/​4109188

[5]	� “Sysadmin: Nmap Scripting”
by Eric Amberg, Linux Magazine,
February 2008, pg. 68

[6]	� “Sysadmin: Nmap Methods”
by Christian Ney, Linux Magazine,
January 2006, pg. 62

[7]	� Nessus: http://​nessus.​org/​nessus/

[8]	� “Metasploit: How Hacking Got
Easy” by Kurt Seifried, Linux Maga‑
zine, November 2008, pg. 62

[9]	� Common Vulnerabilities and Expo-
sures: http://​cve.​mitre.​org/​cve/

[10]	� Open Source Vulnerability Data-
base: http://​osvdb.​org/

[11]	�M ilw0rm: http://​www.​milw0rm.​com/

[12]	�P acketStorm Security:
http://​packetstormsecurity.​com/​
exploits100.​html

[13]	�T op 10 web vulnerability scanners:
http://​sectools.​org/​web‑scanners.​
html

[14]	� SQL Injection Cheat Sheet:
http://​ferruh.​mavituna.​com/​
sql‑injection‑cheatsheet‑oku/

[15]	� SQLMap:
http://​sqlmap.​sourceforge.​net/

[16]	� “Attack of the CSRF”
by Kurt Seifried, Linux Magazine,
Febraury 2009, pg. 66

[17]	� Http parameter pollution:
http://​www.​owasp.​org/​images/​b/​ba/​
AppsecEU09_CarettoniDiPaola_v0.​8.​
pdf

[18]	� Disabling JavaScript in Adobe
Reader: http://​blogs.​adobe.​com/​
psirt/​2009/​04/​update_on_adobe_
reader_issue.​html

[19]	� Didier Stevens’ blog: “PDF Tools”
http://​blog.​didierstevens.​com/​
programs/​pdf‑tools/

[20]	� “Fourth-Generation Rootkits”
by Kurt Seifried, Linux Magazine,
December 2008, pg. 64

INFO

Figure 8: An example of a combination XSS/​

remote code execution.

