
omplexity is an amazing and ter-

rible thing. One of the first Intel 

CPUs was called the 4004 (re-

leased in 1971) and contained 2,300 

transistors. The Pentium 4 (released in 

2000) had 48 million transistors, and a 

modern Quad core CPU has around 2 

billion transistors. In 2008 the Linux 

2.6.27 kernel surpassed 10 million lines 

of code. Personally, my experience has 

been that more transistors mean a better 

computer. On the opposite side, despite 

faster hardware, Linux still seems to take 

the same amount of time to boot up and 

present a working desktop.

In late August 2008, a number of reports 

regarding e1000e network cards became 

public [1]. Not just the typical “I up-

graded my driver and my network 

stopped working,” but actual “my net-

work card has stopped working and is 

not being enumerated at boot time and 

it’s completely dead now” reports. 

The good news is that hardware is 

cheap. The bad news is that hardware is 

cheap. 

In an effort to extend hardware capa-

bilities and cut down on costs, many 

vendors have given hardware devices 

(network cards, etc.) upgradeable firm-

ware. Firmware allows vendors to fix de-

vices that have already been sold to cus-

tomers and deployed (a heck of a lot 

cheaper than a recall); firmware also al-

lows vendors to upgrade hardware and 

add new capabilities on the fly. Of 

course, this means that a device with 

corrupted firmware is unlikely to work 

properly, if at all.

Although it’s pretty obvious that up-

grading to a test kernel shouldn’t kill 

your network card, what do you do 

when it does? If you’re a Linux kernel 

developer, you normally just fire up your 

favorite kernel debugger and simply rec-

reate the circumstances of the problem, 

watch it crash in detail, and figure out 

what happened. Unfortunately, when 

testing a bug that involves killing net-

work cards, it can become difficult to 

test the problem (especially when trying 

to convince others to reproduce the test 

on their own system since your system 

now has a dead network card that won’t 

respond at all). 

Because of the subtle nature of the 

bug and the difficulty in testing it, the 

first few attempts to narrow the bug 

down and fix it were not successful.

If you’re Intel and you have a major 

operating system killing your network 

cards, you can simply take a pile of the 

network cards, a slightly larger pile of 

engineers, and lock them into a room. 

The engineers then start trying different 

versions and patches of Linux to see 

where the problem occurs. Once you’ve 

narrowed down which patch or patches 

are responsible, you can analyze the 

code and determine what is going on.

One of the things ftrace was designed to 

do was provide simple function call trac-

ing. In this mode of operation, a line is 

output for every called function and the 

caller of this function. ftrace uses the 

profiling mechanism built into GCC, 

which in turn adds an mcount() to every 

function so that, when the function is 

called, data is logged. Unfortunately this 

creates a performance penalty (espe-

cially because most systems don’t use 

ftrace functionality). To avoid this, ker-

nel developers used memory patching to 

replace the function calls with noops (no 

operations), something most CPUs han-

dle very quickly.

This solution has one major draw-

back, however: You must patch kernel 

code while the kernel is running, some-

When a test kernel starts wrecking network cards, the community gets 

busy. BY KURT SEIFRIED

Security Lessons

64 ISSUE 98 JANUARY 2009

064-065_kurt.indd   64 13.11.2008   15:45:25 Uhr



thing that can result in Very Bad Things 

if it doesn’t go completely right. To ac-

complish this safely and quickly, ftrace 

makes a log of every incoming mcount() 

call and fixes them. However, doing this 

one at a time is very slow, so the kernel 

developers took the clever approach of 

batching the mcount() replacements. As 

a result, there is a window of time in 

which the mcount() call no longer exists 

in the same memory space; thus, if the 

kernel patches it, the kernel will in fact 

be patching a location in memory that 

can contain virtually anything. The 

Linux kernel developers considered this 

and decided to use cmpxchg (compare 

and exchange) [2], which looks at mem-

ory and compares it. If it matches what 

was expected, it then patches memory; if 

the contents do not match what was ex-

pected (i.e., no call to mcount() is pres-

ent), it does not patch memory. In the-

ory this is completely safe.

Here, things become complex (as if 

they weren’t already). On 32-bit archi-

tectures, the memory returned from 

vmalloc() and ioremap() share the same 

address space. The kernel uses vmalloc() 

for loadable modules, but the e1000e 

driver uses ioremap() to map its mem-

ory space. Once the module initialization 

of ftrace is finished, the __init functions 

are removed from memory and that 

space is freed. This free space is then 

used by the e1000e driver; unfortunately, 

the cmpxchg behavior is undefined 

when patching driver memory. As you 

can probably guess, it allows writes, 

even if memory did not match.

Now normally, writing to a driver’s 

memory address space should simply 

cause the driver to fail catastrophically, 

not the hardware. But in the case of the 

e1000e driver, it left the hardware open 

to writing, thus allowing the kernel to 

write random data to its firmware, 

wrecking the hardware (in some cases it 

was recoverable by rewriting the firm-

ware). The good news is that Intel has 

fixed the driver. At boot-up the driver 

prevents any writes to the card’s firm-

ware, and ftrace has been fixed so that it 

doesn’t overwrite the wrong memory.

The good news is that for most of us, 

the Linux kernel development process 

worked. New features were placed in a 

test kernel, then it was run by develop-

ers and other bleeding edge people 

(Ubuntu Intrepid) who found a serious 

problem, which was fixed. This kernel 

was never released by a major vendor as 

a default option (they tend to be conser-

vative about kernel updates for just this 

reason), and very few people were af-

fected. Additionally, tools such as eth-

tool can be used to recover broken cards 

by writing a new firmware image to it. 

Because so many people had access to 

the source code, they were able to apply 

or remove various patches easily to lo-

calize exactly which pieces of code were 

causing problems. Doing this in a closed 

source environment would be impossi-

ble (everyone would be at the mercy of 

the vendors with the source code. In this 

case, with two vendors (OS and hard-

ware), they would have had to cooperate 

to trace down the exact problem. With 

GPL-licensed code, anyone who wants 

can test all the code and track the prob-

lem down.

This problem was (potentially) one of 

the worst bugs in Linux in a long time. 

Despite being an incredibly complex 

issue – relying on two separate flaws and 

specific hardware – it was caught rela-

tively quickly and was largely confined 

to a small subset of kernel versions. 

Also, because it is a firmware issue, re-

covery was possible with the ethtool 

program. Intel has reportedly made im-

ages of the firmware available that can 

be used to recover broken cards [3].

Because we all have access to the 

source, we can not only make an in-

formed decision about fixing our sys-

tems, we have the ability to do so.  p

Security Lessons

65ISSUE 98JANUARY 2009

Kurt Seifried is an 

Information Secu-

rity Consultant spe-

cializing in Linux 

and networks since 

1996. He often won-

ders how it is that technology works 

on a large scale but often fails on a 

small scale.

T
H

E
 A

U
T

H
O

R

[1]  State of e1000e bug:  

http://  lwn.  net/  Articles/  301251/

[2]  Source of e1000e bug:  

http://  lwn.  net/  Articles/  304105/

[3]  Cause of e1000e bug: http://  ostatic. 

 com/  174457-blog/  likely-cause-of-int

el-e1000e-bug-discovered

INFO

Another example of complexity throwing a wrench into the works is the 802.11 wireless 

standard(s). The standard says that the service set identifier (SSID or ESSID) can contain 

between 0 to 32 characters (ASCII, values from 0 to 255 are allowed), allowing the net-

work name to be long enough to be human readable (“Free Coffee Shop Wi-Fi” vs. 

“1ad834d7”). Simple enough, right?

Wrong. The frame header for an 802.11 packet uses an 8-bit unsigned value to specify 

the actual space available for the data, meaning that the SSID parameter can be between 

0 and 255 characters. Unless you dug deeply into the specification and were looking for 

things that could go wrong, you wouldn’t know this fact. Because the SSID usually is 

 assumed to be a maximum of 32 characters, it is often copied straight into fixed-length 

buffers without any checking of the actual length. This recently bit Linux (CVE-2008-

4395) when the ndiswrapper – software that allows Windows wireless device drivers to 

be used on Linux – was found vulnerable to a buffer overflow that could be exploited 

 remotely by a single wireless packet.

But the standard says 32 max!

064-065_kurt.indd   65 13.11.2008   15:45:26 Uhr


