
he ability to perform a certain

task at a specific time or at regu-

lar intervals is a necessary task

for sys admins. The original cron dae-

mon offers an easy method for job

scheduling on Unix-based systems. Al-

though cron has seen a number of im-

provements over the years, even the

newer versions are designed for very

basic scheduling. An administrator who

wants to do anything unusual must ei-

ther create a wrapper script or build the

additional functionality into whatever

script is started by cron.

Imagine how much time you could

save if you no longer needed to create

wrappers, hack your scripts, or do any-

thing else to get programs to react to

error conditions and run at exactly the

time you need – in exactly the order they

should. Several commercial products

offer this functionality, but they can take

a big bite out of your IT budget. Luckily,

the open source world also provides so-

lutions for beyond-cron scheduling.

In this article, I will explain how to get

started with a powerful alternative: the

Open Source Job Scheduler.With any

scheduling software, the primary admin-

istrative unit is the job, which is typically

a script or program started by the sched-

uling software. In many cases, cron is

sufficient to handle the most simplistic

scheduling requirements, such as run-

ning a certain job once a day (i.e., back-

ups). Even jobs that need to run at more

frequent intervals (every 15 minutes),

less frequently (once a month), or even

on specific dates (the first of the month)

can be handled by cron.

When you start dealing with depen-

dencies of any kind, you quickly begin

to see the limitations of cron – for exam-

ple, if you want to start a specific pro-

gram after a certain event occurs. In my

work, I have a number of job chains that

consist of up to a dozen individual jobs

that must be run in a precise order, and

each job can only run if the previous job

in the chain was successful. If one step

fails, the execution of subsequent jobs

would create major problems. Even the

newest versions of cron cannot handle

this, especially if you need to be able

jump into the middle of the chain occa-

sionally and start a job from there.

Events that start jobs can be more

than just specific times or the comple-

tion of other jobs. Often jobs simply wait

until either a specific file is delivered or

anything at all arrives in a predefined di-

rectory. Naturally, on many occasions,

specific jobs must be started on demand

rather than waiting for a specific event.

Many tasks need to be managed on

multiple machines, so the better sched-

uling software allows you to manage all

of your machines from a central point,

remotely start jobs, and so forth. To dis-

tribute crontabs to these remote ma-

chines, you could configure rsync or use

some other mechanism, but this quickly

becomes an administrative nightmare

when the configuration is different

across several machines, when jobs need

to be started manually often, and when

other tasks exist that are not part of

cron’s functionality.

Although you can install open source

versions of cron on Windows machines,

dealing with different operating systems

causes even more problems. For exam-

ple, some Unix dialects do not support a

central /etc/crontab file, so you need to

set up files for individual users. Cron

Planning and scheduling jobs can mean a lot of work,

especially if they are spread across multiple

machines. Here’s a tool to make that task a lot easier.

BY JAMES MOHR

Open Source Job Scheduler

66 ISSUE 97 DECEMBER 2008

066-070_jobscheduler.indd 66 16.10.2008 15:54:40 Uhr

was a useful tool in its time, and often

still is, but the requirements of many

companies rule it out.

The limitations of cron have not gone

unnoticed, and a number of products

have come on the market. Commercial

products can cost a small fortune and

are often licensed on the basis of the

number of servers or, in some cases, the

number of scripts you start.

Problems with job scheduling and

commercial software licensing have not

gone unnoticed by the open source com-

munity. One amazing solution is the

Open Source Job Scheduler, developed

by Software- und Organisations-Service

(SOS) GmbH in Berlin, Germany. Ver-

sions are available for Linux, Solaris,

HP-UX (PA-RISC, IA64), AIX, and Win-

dows. It also supports several different

databases, including DB2, Oracle, MS

SQL Server, PostgresSQL, and MySQL.

Depending on your needs, two differ-

ent licenses are available: GPL and Guar-

anteed License. Both license types pro-

vide the same basics, including all of the

functionality, source code, and upgrades.

Note that the product is the same with

both licenses.

Although some products provide more

features in the commercial version, SOS

Managing Director Andreas Püschel sees

their business focused on support and

service and not the product itself. Also,

SOS does not market their product – or

even their services – in the traditional

sense. When demonstrating the product,

the goal is not to convince potential cus-

tomers, but rather to show what the

product can do and let the customers de-

cide for themselves whether the product

fills their requirements. Simply seeing

what this product can do will convince a

lot of people.

The commercial version also provides

a “responsible person” for each service

call with guaranteed response times, and

feature requests are given a higher prior-

ity for possible implementation. Also,

this version does not have the restric-

tions of the GPL, so you can bundle it

with your own application, for example,

without having to adhere to the GPL.

Unlike most open source and commer-

cial software, SOS also provides a limited

two-year warranty, as well as an indem-

nity agreement. According to Püschel,

the company feels obligated to give the

customer what they pay for, and this

also extends to discrepancies between

the product and documentation.

The central component of the package

is the Job Scheduler engine, which runs

on every machine on which you want to

schedule jobs. This method is different

from executing the job, and the docu-

mentation provides a couple of ways to

provide for remote execution, one of

which is to have a scheduler installed on

the remote machine acting as a slave for

the first machine. However, if necessary,

the other servers can function as a full

scheduler, as well. This mechanism can

be expanded to enable load balancing

across multiple servers. A job chain is

managed from one machine and distrib-

utes the requests to the other machines.

One key aspect to consider is the so-

called order, which is a token or flag that

is passed between jobs. Depending on

their configuration, jobs cannot start

until they have been given their order.

In the simplest form, orders are like a

baton in a relay race, handed from one

job to the next. However, they can also

contain parameters that are passed be-

tween jobs (e.g., the current file being

processed). Also, you can configure or-

ders with specific start times so they are

automatically generated by the system at

the specified time, and then the respec-

tive job chain can start.

Note that to be able to react to an

order, a job must be configured to accept

them, but the order can only be associ-

ated with a job chain, as opposed to an

individual job. That is, the order is

passed from job to job within the job

chain, but it is associated with the chain

and causes the job chain to start. If you

want a single job to start at a specific

time, for example, this can be done

within the job itself. Another key com-

ponent is Hot Folders, which are directo-

ries that the scheduler monitors for

changes, such as new or modified jobs.

Jobs can be configured from the Job

Scheduler Editor GUI (Figure 1; hereafter

called the Job Editor), or XML files can

be edited directly. The Job Editor GUI is

a Java-based application that you can

use to configure the various jobs, chains,

and other aspects of the system. All of

the server configuration information is

stored in XML files, and all you need to

do is open up the respective XML file in

the Job Editor to make your changes.

From my experience with other job

schedulers, being able to use vi on con-

figuration files is more than a blessing

when having to do massive changes.

The XML files can be copied to remote

machines and saved via FTP directly

from the Job Editor. When they land in a

Hot Folder, the files are immediately

available to the scheduler engine on the

remote machine.

The Job Editor GUI is not as intuitive

as it could be, and the purpose of many

of the fields is unclear at first. Because

the documentation leaves something to

be desired, explanations for many of

these fields was simply not to be found.

In some cases, I could still figure out

what was meant by the descriptions of

the XML files in the documentation.

Although the configuration informa-

tion is stored in XML files by default,

you can configure the scheduler to use a

number of different databases. These

jobs are called “managed jobs,” and

every scheduler you set up can be con-

figured to access the jobs in the data-

base, so you do not need to copy the

files manually.

The day-to-day operation is handled

by the Job Scheduler operations GUI

(hereafter called the Operations GUI),

which is run through a web browser,

thus allowing you to manage your jobs

from almost any machine. With this

GUI, you can monitor not only jobs, but

also start, stop, handle errors, and many

other functions.

The Job Scheduler also provides an

API that allows you to manage and con-

trol jobs externally. The API supports

several languages, including Perl, VB-

Script, JavaScript, and Java. Surpris-

ingly, PHP is not supported, despite the

ability to manage jobs from a web

browser and the documentation of sam-

ple PHP scripts.

For the examples in this article, I used

version 1.3.4 for Linux, which you can

download from the Job Scheduler site at

SourceForge [1]. If you plan to use a

MySQL database, as I did, note that the

Job Scheduler does not provide a JDBC

driver for MySQL, although one is pro-

vided for Oracle and other databases.

The MySQL JDBC Driver can be down-

loaded directly from the MySQL website

[2]. Simply input the path to the appro-

priate .jar during the installation.

Open Source Job Scheduler

67ISSUE 97DECEMBER 2008

066-070_jobscheduler.indd 67 16.10.2008 15:54:41 Uhr

Before you start, I recommend that

you read the PDF installation guide that

is included in the package. Also, several

other PDFs are on the company’s web-

site [3] that go into more detail about

various topics. Be warned: To get even

the most basic information from the doc-

umentation, you need to be somewhat

familiar with object-oriented program-

ming and XML because the documenta-

tion provides almost no background in-

formation in these areas. Also, the docu-

mentation is not well organized, so ex-

pect to do a lot of searching. Although

the documentation is extensive, it’s not

easy to use, which is something the

company plans to improve.

On Linux, installation is through a

Java installer and, if done as a normal

user, the default is to install it in

$HOME/scheduler. If you install it as

root, it ends up in /usr/local/scheduler.

After you install the product, you will

find a README file that recommends

you don’t install the Job Scheduler as

root, but nothing in the Job Scheduler

Installation and Configuration guide

mentioned this. To avoid potential prob-

lems, I re-installed as a normal user.

During the install, you are prompted

for the database type and connection in-

formation. Whether “database parame-

ters” are the connection parameters once

the database is running or connection

parameters to create the database is un-

clear. Unfortunately, it’s recommended

that you create a database and user for

the Job Scheduler to use, but this is first

mentioned after all of the installation

steps. Creating the database by hand and

assigning DB privileges before you start

the installation does the trick.

The installation is fairly intuitive, but

it takes a few minutes to create the data-

base tables and complete. If you are

planning to install the scheduler on mul-

tiple machines with the same parame-

ters, you are prompted to create an auto-

mated installation script after the end of

the first installation.

Regardless of whether you install the

Job Scheduler as root or as a normal

user, you will need to start the scheduler

by hand. Control of the Job Scheduler is

done like a typical rc script:

$HOME/scheduler/bin/jobscheduler.sh

start

$HOME/scheduler/bin/jobscheduler.sh

stop

If you want to start the scheduler auto-

matically when the system boots, I sug-

gest that you create a specific user just

for the Job Scheduler and then create an

rc script that does an su to that user and

starts the scheduler. Should jobs need to

be run as root or another user with more

privileges, you can set up an appropriate

sudo environment.

To create jobs, you can either edit the

XML files directly or through the Job Ed-

itor GUI. On Linux, run the jobeditor.sh

script, which is located by default in /

usr/local/scheduler/bin or $HOME/sched-

uler/bin.

As an example, consider the typical

task of creating a backup of your system

configuration. For now, I’ll assume that

you want to do this daily with the script

/usr/local/bin/config_backup.sh.

First, start the Job Editor and select

New | Hot Folder Element | Job (Figure

1). On the first form, begin inputting the

basic information for your job. For this

example, simply input the Job Name

“Configuration Backup”; in the Job Title

field, add a description or leave it blank.

In the left-hand panel, click Execute to

input the details about the program or

script you want to start. Because you

want to execute an external script, select

the radio button Run executable and

input the complete path to the script

named above. Here, you also can define

additional parameters that are passed to

the script. For example, if the backup is

to compress the files it backs up, you

might add a -c here.

Also, you could include the individual

execution steps by selecting the Script

radio button and the type of program

code, then inputting the source code in

the appropriate box. Note that this is

more than the name of a script and can

include programming constructs based

on the language you select (Figure 2).

To save the job, press the Save button

or choose Save from the File menu. The

Open Source Job Scheduler

68 ISSUE 97 DECEMBER 2008

066-070_jobscheduler.indd 68 16.10.2008 15:54:42 Uhr

first time you save the file, you are

prompted to input the file name. To do

so, navigate to the ../config/live/ direc-

tory and save the file as Configuration

Backup, and the .xml extension will be

added automatically.

Because you saved the file into the live

directory, it is immediately visible to the

system. This directory is pre-defined as a

Hot Folder, which the system reads regu-

larly. At this point, you have not sched-

uled the job but simply added it to the

system. To start the job, you need to run

the Operations GUI by pointing your

browser to http:// localhost:4444.

When you connect from the browser,

you are presented with a GUI similar to

that in Figure 3. To see the details of the

job, double-click on your backup job in

the left-hand column. To run the job im-

mediately, click on the Job menu button

and select Start task now.

Because you could easily start the

script from the command line, this is

pretty unspectacular. If you go back into

the Job Editor and click the Run Time

entry in the left panel, you can select a

time when this job should run. To do so,

click on Everyday and then define a new

period by clicking the New Period but-

ton. For Start Time, input something like

09:00 in the Single Start field. Now click

the Save button and this new configura-

tion is active – the job will now start

every day at 9:00am.

In terms of creating jobs, so far the

only thing the Job Scheduler editor pro-

vides that cron does not is a nice GUI –

but you have only scratched the surface.

When you begin working with with job

chains, you will start to see the power of

job scheduling.

First, assume you have created a sec-

ond job that does a database backup,

which you want to run immediately after

the configuration backup has completed.

One alternative is to create a single script

that first does the configuration backup

and then immediately starts the data-

base backup. However, job chains come

in handy in many more complex situa-

tions that you cannot simply implement

with a single shell script, which I discuss

later. For simplicity’s sake, I’ll stick with

these first two jobs.

As with the first job, create a new Hot

Folder element, but select Job Chains.

Here, you input the Chain Name and, if

desired, a Title (i.e., a description). Be-

cause each element in a chain is referred

to as a Node, you need to add a New

Chain Node next by clicking the respec-

tive button. If you know the name of the

job, you can input it manually or use the

Browse button to search for the job.

In the State field, you can define a

state for this step or job node. By defin-

ing states, you can define a more com-

plex job flow. For example, you could

define a state named “Error,” and if one

of the steps encounters an error, you im-

mediately jump to that job, skipping all

of the other jobs. Also, you could have

different error jobs run for each of the

various steps.

Although creating a job chain consist-

ing of just a single job has certain advan-

tages, don’t stop there. As I mentioned,

you want a backup job chain consisting

of two steps, so you’ll create a second

chain node with the database backup

job and configure it similarly to the sec-

ond job. In the example here, you de-

fined the first Node as state Start and the

second as state End, although this is not

really necessary.

When you click on the Save button,

you will see the new chain under the Job

Chains tab in the Operations GUI. Click-

ing on the Show Jobs checkbox displays

the individual jobs in your chain. Dou-

ble-clicking on the chain opens the de-

tails panel on the right-hand side, as it

did with the single job.

At this point, the job chain is still not

going to be run because it needs its

marching orders, which you can create

manually by selecting the Job Menu but-

ton on the right and selecting Add Order.

A new window pops up and allows you

to define various characteristics of the

order, such as the order ID, start time,

and even the state to which the chain

should jump. In this example, just leave

everything blank, and the system will

create an order ID for you.

If you did not define any conditions,

the chain starts immediately; however,

you could have defined a Time Slot for

either of these jobs and the scheduler

would wait until that time was reached

before starting the job.

Note that the jobs must be able to ac-

cept orders to react to them. This step is

done in the configuration window for

the individual jobs. In the Main Options

window is an On Order radio button that

needs to be set to Yes; otherwise, the

order will not start the job.

So far, you have started everything

manually, more or less. Because you

need to define an order in which to start

the job chain, you obviously need a way

to create orders dynamically. One way

would be to create an order at a specific

Open Source Job Scheduler

69ISSUE 97DECEMBER 2008

066-070_jobscheduler.indd 69 16.10.2008 15:54:43 Uhr

time, which in turn triggers the job

chain. As you might expect, this is done

though the menu New | Hot Folder Ele-

ment | Order. After you name the order

and, in the Job Chains window, select

the specific job chain you want to asso-

ciate with this order. Note that an order

can only be associated with a single

chain. Then define a new Time Period

and a Single Start period of 09:00. To

 activate the changes immediately, you

need to store it in the config/live/ direc-

tory when you save it.

When you return to the Operations

GUI, you will see that an order is now

associated with the job chain you cre-

ated. Below the order, a next start entry

shows the date and time that this order

will start. Because it is already after

9:00am in this example, the date is to-

morrow. Had you used a different start

time, such as the first of the month, the

next start would be on that date.

In defining the time period for jobs,

chains, and orders, you have a couple of

choices. First, you can define a specific

time slot in which a job can start – for

example, a daily account reconciliation

after all of the database imports for ac-

counts receivable and accounts payable

are completed. However, because of the

load this job causes on the system, it

should not start until after 11:00pm,

even if the other jobs are completed.

The second way is to define a specific

start time. For example, the account rec-

onciliation should always start at

11:00pm, or you want the account recon-

ciliation job to run repeatedly every 12

hours. Naturally, if you have a job chain

in which the jobs need to be run sequen-

tially, then hard start times of the indi-

vidual jobs probably won’t be needed.

However, you can define an order that is

started every day at 7:00am, which in

turn starts a job chain.

Note that you are not just limited to

running jobs at specific hours but can

configure a job or order to run on spe-

cific days of the week or days of the

month, or according to a more complex

definition, such as the second Monday

of the month, the third to last day of the

month, and even days such as January 8

and February 16, but no other dates.

Specific start times for jobs and job

chains are obviously a useful feature,

but it is not always possible to know in

advance when a job needs to be started

(e.g., database imports that need to wait

until a specific file is delivered). The

more direct method is to write the job

script in such a way that it exits if the

file is not there. However, if your system

is then loaded with unnecessary log en-

tries and so forth, you can quickly lose

sight of important events. To solve this

problem, the Job Scheduler allows you

to set up “watch directories.” As the

name implies, these are directories that

are watched for specific files or even

based on regular expressions (Figure 4).

After I got past preconceptions and mis-

understandings resulting from my expe-

rience with other scheduling products, I

became more and more fond of the Open

Source Job Scheduler. When I got the

hang of things, the product was actually

easy to configure and administer.

My experience with SOS GmbH itself

was extremely pleasant. From the recep-

tionist, through tech support, and up to

the managing director, everyone I talked

to seemed to be convinced of the quality

of the product and the company itself. I

became impressed with the company

after I identified a bug and the patched

Java JAR file was on their server in less

than a day!

Even with a small network, the Open

Source Job Scheduler provides useful

functionality. With larger installations, it

is almost an indispensable tool. p

James Mohr is re-

sponsible for the

monitoring of sev-

eral datacenters for

a business solu-

tions provider in

Coburg, Germany.

In addition to run-

ning the Linux Tutorial web site

http:// www. linux-tutorial. info,

James is the author of several books

and dozens of articles on a wide

range of topics.

T
H

E
 A

U
T

H
O

R

Open Source Job Scheduler

70 ISSUE 97 DECEMBER 2008

[1] Open Source Job Scheduler: http://

 jobscheduler. sourceforge. net/

[2] MySQL JDBC driver: http:// www.

 mysql. com/ products/ connector/

[3] Software- und Organisations-Ser-

vice GmbH: http:// www. sos-berlin.

 com/ scheduler

INFO

066-070_jobscheduler.indd 70 16.10.2008 15:54:44 Uhr

