
71

P
uppet is a centralized configura-

tion management system that

uses a cross-platform specifica-

tion language. To use it, you run a cen-

tral Puppet server – the puppetmaster –

and run puppet daemons on all the com-

puters you administer. Configuration op-

tions for all the client machines are set

up on the puppetmaster. Then, configu-

ration changes are propagated from the

puppetmaster to the appropriate

clients.

Puppet lets you manage files (owner-

ship, mode, content, and existence),

users, groups, packages, and services

from a central location. You can run

commands or scripts, and you can also

manage

crontabs,

 filesystem

mounts, and

network configu-

ration settings.

Each item you man-

age is known as a re-

source, and resources are

categorized into types (e.g.,

file, package, service, cron).

Puppet is under active develop-

ment, and people are regularly adding

more types – you can even create your

own type.

Why Use Puppet?
Three major reasons for using Puppet are:

1. Puppet preserves a record of the client

configuration. If a client system dies,

you can generate an identical configu-

ration on a new system based on the

information stored with the Puppet-

master.

2. If you have more than one machine,

you can set them all up identically (or

use the same base system and apply

modifications for individual clients).

3. Puppet’s type system makes it easy to

manage multiple systems from a sin-

gle location.

Another advantage of Puppet is that it

works together with a tool called Facter.

Facter sets up per-host variables (such as

hostname, IP address, and operating sys-

tem) automatically, allowing you to fine

tune specific settings on individual cli-

ents without losing the benefits of a

common configuration.

Installation and Setup
Puppet source code is available from the

project website [1].

Puppet packages reside in the reposi-

tories of several Linux distributions. For

Debian, the Puppet server package is

puppetmaster. Also, you will need a set

of Ruby packages, which apt-get will sort

out for you.

Puppet is also available for other

distributions and can be compiled

from source.

Note

that the cur-

rent Debian

stable package is

v0.20.1, whereas

the current source re-

lease is v0.24.1, so some

newer features are missing

from the Debian package dis-

cussed in this article.

The main configuration file is at

/etc/puppet/puppetmaster.conf and is

straightforward; for example:

[puppetmasterd]

Make sure all log messages U

 are sent to the right directory

This directory U

 must be writable U

 by the puppet user

logdir=/var/log/puppet

Learn how to save time and streamline your system administration with the help of Puppet, a centralized

configuration management tool. BY JULIET KEMP

Manipulating your machines with Puppet

PULLING STRINGS

SYSADMINPuppet

071-075_puppet.indd 71 17.01.2008 11:36:41 Uhr

vardir=/var/lib/puppet

rundir=/var/run

To store file content, you’ll also need a

file server configuration file at /etc/pup-

pet/fileserver.conf. The example shown

here gives the path for file storage on the

puppetmaster and allows access to all

machines in example.com:

[files]

 path /etc/puppet/files

 allow *.example.com

deny *.evil.example.com

allow 192.168.0.0/24

Also, you can ban specific machines or

domains and can specify by IP address

if you prefer. To create the Puppet users

that the daemon runs as, run the pup-

petmaster daemon for the first time with

the mkusers flag. Because you haven’t

created any node definitions yet, you’ll

also need to use the --nonodes flag:

/usr/bin/puppetmasterd U

--mkusers --nonodes

Basic Recipe
Now that the initial server setup is done,

I'll look at how to set up your site mani-

fest and start managing configurations

and other types. By default, the main

Puppet site manifest is at /etc/puppet/

manifests/site.pp. Anything in this file

will run on all clients. To start, try put-

ting in an easy recipe; the sudoers file

is a useful one and is shown here:

file { "/etc/sudoers":

 owner => "root",

 group => "root",

 mode => "440"

}

This will ensure that the sudoers file

on the client has these properties.

When testing, you will want to run

your puppetmaster as puppetmasterd

--verbose, which sends output to the

screen rather than to logs, so you can

tell what’s going on immediately.

Setting up a Client
Next, start the puppetmaster, and then

you also will need to set up a client so

you can run a test. For a client, you need

the puppet package. To set the server

name for your site, edit /etc/puppet/

puppetd.conf,

server = U

 puppetserver.example.com

then change the modes or owner of the

/etc/sudoers file on the client so they dif-

fer from what you’ve set in site.pp on the

puppetmaster. Then, run the client for

the first time using the puppetd --waitfor-

cert 60 --test command.

Clients are authenticated by a certifi-

cate request to the puppetmaster. The

client will complain about the lack of

certificate and then pause, so you need

to tell the puppetmaster to sign the cli-

ent’s certificate. puppetca --list on the

puppetmaster shows the list of clients

waiting for signature. puppetca --sign

 client.example.com (on the puppetmas-

ter) will sign the certificate (or puppetca

--sign --all signs all the waiting certifi-

cates). After 60 seconds, the client will

pick up the signed certificate and run.

The test flag makes the client run in

 verbose mode, one time through.

Figure 1 shows a slightly more compli-

cated sample run on one of my clients.

After the run finishes, check /etc/sudo-

ers; the modes should now be as you set

them on the puppetmaster.

In addition to managing these file at-

tributes, you can also manage file con-

tent using Puppet as a file server. First,

create a sample sudoers file and put it

in /etc/puppet/files/sudoers.

Then, edit site.pp again so that the

 sudoers recipe looks like this:

file { "/etc/sudoers":

 owner => "root",

 group => "root",

 mode => 440,

 source => U

Figure 1: A slightly more complicated run of Puppet from the client end. Note the facts loaded

at the start and the red showing services refreshing.

01 cron { restart-puppet:

02 command => 'if [-e /var/run/puppetd.pid];

 then ps uw -p `cat /var/run/puppetd.pid`

 | grep -q ' ruby /usr/sbin/puppetd'

03 || (rm /var/run/puppetd.pid; /etc/init.d/puppet start); fi',

04 user => root,

05 minute => '0',

06 }

Listing 1: Cron Job to Restart Puppet

PuppetSYSADMIN

72 ISSUE 88 MARCH 2008

071-075_puppet.indd 72 17.01.2008 11:36:51 Uhr

 "puppet://puppetserver. U

 example.com/files/sudoers",

}

Edit the file on the client so it looks

somewhat different from this sample file

(e.g., add a test comment line), and run

Puppet on the client again with puppetd

--test. The file content will change.

When managing files, you can also

 ensure that softlinks exist or that directo-

ries exist. This snippet also shows how

you can use a single file { } container

for multiple file resources.

file {

 "/star":

 ensure => link,

 target => "/soft9/star";

 "/test/dir":

 ensure => directory;

}

Note the semicolon at the end of each

resource specification.

Dependencies
Resources interact with each other. Cer-

tain packages are required for certain

services, for example, or you might want

a service to restart when a particular file

is changed. Puppet has dependencies –

notably require and subscribe – to set up

these interactions.

The example below uses the service

type, which you can use for exim,

Apache, or any other daemons that you

want to keep running:

service { "slapd":

 ensure => running,

 hasrestart => true,

 require => U

 Package["slapd"],

 subscribe => U

 [File["ldap.conf"], U

 File["/etc/ldap/schema"]],

}

The hasrestart option lets Puppet know

whether to restart service with stop/ start

or with restart. require simply provides an

ordering relationship; it guarantees that

the referred-to resource – in this case, the

slapd package – will be set up before this

resource. All types support this.

subscribe is a reactive dependency.

If the specified resources change, then

the resource will refresh. The types exec,

service, and mount support this.

Note the way that you specify Puppet

resources in this context: using the type

name capitalized and giving the name of

the resource. Also, these resources must

be specified elsewhere, or an error will

occur.

Puppet can manage numerous types:

• Packages: Puppet interacts with most

of the major packaging systems and

can ensure that particular packages

are installed, which is particularly use-

ful when setting up a new machine:

package { "slapd": U

 ensure => installed; }

• Exec: Executes internal commands.

The subscribe command is useful

here. For example, here is a snippet

that updates exim4 when the exim4

config file is changed.

exec { "exim4-update":

 command => U

 "/usr/sbin/U

 update-exim4.conf",

 user => "root",

 subscribe => U

 File["update-exim4"],

 refreshonly => true,

}

• Users and groups: This type is mostly

intended for managing system users,

rather than normal users. Managing

the home directory (e.g., to create it)

is possible, as well as other user attri-

butes as shown here:

user { "manager":

 ensure => present,

 home => U

 "/local/manager",

 managehome => true,

 gid => "systemusers",

}

• Cron: Manages cron jobs. One possible

use is to restart Puppet on clients if it

fails, as shown in Listing 1.

 For printing purposes, the command

is shown on multiple lines but must

be on a single line.

 The hour and day when the cron job

is to be run and the user that the cron

job should run as can be set, as shown

above.

 The command is added to the relevant

user’s crontab.

• Mount: Mounts paths to ensure. If the

ensure parameter is set to present, the

filesystem will be in the table but not

mounted. If the parameter is set to

mounted, the filesystem will be put in

the table and mounted. And if the pa-

rameter is set to absent, the filesystem

will be removed from the table.

• Various networking attributes are also

available: hosts, interfaces, mail lists,

mail aliases, and SSH host keys.

For a full list of types, see the Puppet

project website.

New types are being developed all the

time – although you might need to update

to the latest version of Puppet to use them.

Defaults
For any resource, you can set up de-

faults. For example, if most of your files

01 class base {

02 # Various basic things

03 include autofs

04 include cron

05 include puppet

06 include ssh

07 # and so on

08 }

09

10 class desktop inherits base {

11 # Everything in the base

class will automatically be

included here

12 # Then you can also

13 include latex

14 include gnome

15 # and so on

16 }

17

18 class server inherits base {

19 # Again, everything from

the base class will

automatically be included

20 # Then some other

server-only things

21 include nfs

22 # and so on

23 }

Listing 2: Multiple Classes and Inheritance

SYSADMINPuppet

73ISSUE 88MARCH 2008

071-075_puppet.indd 73 17.01.2008 11:36:51 Uhr

are owned by root and have chmod

value 644, the snippet here will set these

values as default for all files:

File {

 owner => "root",

 group => "root".

 mode => "644"

}

To override this default, specify a differ-

ent value for any of these values within

a particular resource. Note that defaults

only apply to their own scope (class)

and any class beneath that; if you want

them to apply globally, you should set

them outside any class – for example,

in site.pp.

Organizing Your Puppet
Directory
The Puppet website offers suggestions

for organizing your files and manifests.

Regardless of what system you use,

make sure it is comprehensible and

 easily updatable.

My system looks like this:

- Puppet main dir:

 |- Files

 |- Applications

 - Users

 |- Manifests

 |- site.pp

 - Nodes – directory with

 various node manifests –

 see next section

 - Classes – directory with

 various class manifests,

 according to program

 (e.g., apt.pp, apache2.pp)

 |- Definitions.

 |- Templates.

The subdirectories all contain class files

(see below), and to include these, site.pp

looks like this:

import "classes/*"

import "definitions/*"

import "nodes/*"

import "users/*"

Nodes
So far, I’ve only considered the configu-

ration for a single machine, but Puppet

really comes into its own when you have

multiple machines. If they’re all identi-

cal, you only need to set up one confi-

guration – the default.

site.pp

default {

 include sudo

}

If this is the only configuration, it will

run on any Puppet client connecting to

this puppetmaster.

But you can also have a configuration

that differs for each machine, or you can

set up base configurations and then ei-

ther inherit from or include them in the

node configuration. For example, you

may have a basic server config that dif-

fers from your desktop config, and both

may inherit from a base or default config

(Listing 2).

Classes can be specified either in a

single file or in a file per class; I recom-

mend the latter for ease of configuration

management.

Facter, Templates, Variables
A useful aspect of Puppet is that it

comes with Facter, a utility that sets vari-

ous “facts” about a particular machine,

including hostname, IP address, archi-

tecture, operating system, SSH key, pro-

cessor information, memory informa-

tion, and others.

To see the full lists of the facts pro-

vided by default, type facter at the com-

mand line. You can refer to these facts

within Puppet with $factname. These

facts have two important uses: to create

conditional structures, and to use in

templates.

Conditionals
Puppet has three types of conditionals:

1. Selectors are used within a statement;

for example:

package {

 "krb-clients":

 ensure => U

 $operatingsystem ? {

 ubuntu => absent,

 debian => U

 installed,

 default => undef

 };

}

 Here, if the $operatingsystem fact

is set to ubuntu, the package is not

 installed; if it is set to debian, the

package is installed. The default

is not to set the attribute at all.

Note the lack of a comma on the

final line.

2. The case statement provides a way

of conditionally applying classes:

case $operatingsystem {

 ubuntu: { include ubuntu }

 debian: { include debian }

 default: { include basic }

}

 In this snippet, the class specific to

each operating system is included,

 depending again on the value of the

$operatingsystem fact. Multiple con-

ditions can be specified by using a

comma.

01 *filter

02 :INPUT DROP [0:0]

03 :FORWARD DROP [0:0]

04 :OUTPUT ACCEPT [0:0]

05 -A INPUT -d 127.0.0.0/255.0.0.0

 -i ! lo -p tcp -j DROP

06 -A INPUT -d <%= ipaddress %> -m state --state RELATED,ESTABLISHED -j

ACCEPT

07 -A INPUT -i lo -j ACCEPT

08 -A INPUT -s 104.198.153.0/255.255.255.0 -d <%= ipaddress %> -j

ACCEPT

09 -A INPUT -d <%= ipaddress %> -p tcp -m tcp --dport 22 -j LOG

--log-prefix "ssh:"-A INPUT -d <%= ipaddress %> -p tcp -m tcp

--dport 22 -j ACCEPT

10 COMMIT

Listing 3: iptables.erb

PuppetSYSADMIN

74 ISSUE 88 MARCH 2008

071-075_puppet.indd 74 17.01.2008 11:36:52 Uhr

3. Also, there is a simple if/ else struc-

ture; for example:

if $needexample {

 file { U

 "/usr/local/example": U

 ensure => present }

}

else {

 file { "/usr/local/test": U

 ensure => present }

}

Currently, it is only possible to deter-

mine whether the variable is set, but not

to distinguish between particular values

of a variable. To do that, you must use

the case or selector statements.

Templates
A template uses Ruby to put variables

into a source file. In other words, it’s like

providing a central file that can vary ma-

chine by machine.

A good example of using a fact in a

template is to set an ipchains policy. For

example, the file iptables.erb (ERB is the

Ruby template syntax) shown in Listing

3 uses $ipaddress.

Then, you can refer to this template:

file { "iptables_config":

 name => U

 "/etc/sysconfig/iptables",

 content => template U

 ("/etc/puppet/templates/U

 iptables.erb"),

}

Note that whereas files need the pup-

pet://puppetserver.example.com syntax,

templates do not.

Custom Facts
Default facts are available on all clients

automatically.

However, if you write custom facts,

you will want to keep them on the

 puppetmaster and then set up the clients

to synchronize their facts with the

server.

Add a section to /etc/puppet/fileserver.

conf on the puppetmaster,

[facts]

 path /etc/puppet/facts

 allow *.example.com

and on each client, add a line to /etc/

puppet/puppetd.conf:

factsync = true

Then, restart puppetmasterd on the

server and puppetd on the clients. Now

you can put any custom facts in /etc/

puppet/facts and have them propagated.

For example, to set up a fact that sets the

$home fact to the $HOME environment

variable, create the file /etc/puppet/facts/

home.rb:

Facter.add("home") do

 setcode do

 ENV['HOME']

 end

end

The next time Puppet runs on your cli-

ents, this fact will be synchronized and

can then be used in any of your recipes.

Other Variables
Variables are useful in other situations

as well. A variable set in site.pp will be

available to all other manifests or

classes. So, for example, if you have a

standard set of users who are allowed

to log into your servers and you want

to edit /etc/ssh/sshd_config accordingly,

then the snippet and template in Listing

4 would work well.

Setting the file server via a variable

can also be a good idea; if your server

ever changes, you won’t have to edit

every file that refers to the Puppet server.

Conclusion
This brief overview is only a glimpse

into the possibilities available with

 Puppet. More recent versions of the

 software let you arrange your setup

in modules, which can give even more

 flexibility and reusability. If you use

LDAP to store users and machine infor-

mation, you can take your node defini-

tions from there.

Having file content in one place also

makes it very easy to use Subversion (or

another version control system), and I

strongly recommend that you do so! The

ability to roll back changes is helpful.

If you need more information or sup-

port, check out the Puppet website, wiki

[2], and the mailing list [3]. Go forth and

pull the strings on your machines! �

01 # in site.pp

02 $server_ssh_users = "root jkemp admin"

03

04 # in ssh.pp or wherever else you want to keep it

05 file { "sshd_config":

06 name => "/etc/ssh/sshd_config",

07 allow_users => 'AllowUsers $server_ssh_users',

08 template => "/etc/puppet/templates/sshd_config.erb",

09 }

10

11 # relevant snippet of sshd_config.erb

12 LoginGraceTime 600

13 PermitRootLogin without-password

14 StrictModes yes

15

16 <%= allow_users %>

Listing 4: Using Variables in SSH Setup

Juliet Kemp has been playing

around with Linux ever since she

found out that it was more fun than

Finals revision and has been a sys

admin for about five years. She

thinks that the more you automate

your systems, the more free time

you have for when something really

serious goes wrong… or for surfing

the Internet.

T
H

E
 A

U
T

H
O

R

[1] Puppet project: http:// reductivelabs.

 com/ projects/ puppet/

[2] Puppet wiki:

http://reductivelabs.com/trac/puppet/

wiki

[3] Puppet mailing lists:

http://reductivelabs.com/trac/puppet/

wiki/GettingHelp#mailing-list

INFO

SYSADMINPuppet

75ISSUE 88MARCH 2008

071-075_puppet.indd 75 17.01.2008 11:36:52 Uhr

