
44

T
he rise of PHP has spawned a

new industry in tools for PHP de-

velopment. By providing stan-

dard, reusable components, these tools

simplify development and speed up the

coding process. One of the entries in this

race is eZ Components, a generic PHP li-

brary created by eZ Systems, the makers

of the eZ Publish Content Management

System. The eZ Components library,

which is available for download under

the open- source New BSD license, offers

an easy-to-use collection of standard

components designed to reduce errors

and save development time [1]. We dem-

onstrate a few interesting features of the

eZ Components library and put those

features to work on a sample application

that forwards email messages.

The individual components that make

up eZ Components are independent for

the most part, although they support col-

laborative use and integration via the tie-

in model. (A tie-in is a component that

links to otherwise independent compo-

nents.) The eZ Components developers

extensively document even the most

trivial function in the code. For example,

you will find a comprehensive tutorial

for each component and sample applica-

tions to match.

PHP specializes in web applications,

so the eZ Components library comes

with a large selection of web tools. A

template engine allows for easy creation

of HTML templates and abstracts the

display logic from the remaining pro-

gram structure.

The syntax, which is reminiscent of

the Smarty template system, is fairly

simple to learn. An integrated caching

mechanism that builds the templates

into the PHP code on first use keeps per-

formance hits to a minimum. Automatic

escaping of all output provides protec-

tion against XSS attacks. Plus, the tem-

plate component has a flexible interface

for extensions that supports the integra-

tion of new functions and user-defined

block structures.

The UserInput

component,

which is based

on the filter

extension in-

cluded in PHP

5.2, supports

verification and

validation of

user input. Fans of the model-view-con-

troller approach will find the URL com-

ponent a flexible tool for URL process-

ing. The Feed package gives developers

the ability to handle and create various

XML feed formats. The component is

currently in alpha.

In addition to these web-only compo-

nents, eZ Components contains many

packages that are useful for other appli-

cations: reading and writing configura-

tion files (Configuration component),

creating, unpacking, and manipulating

archives (Archive component), logging

in various formats (EventLog and Event-

LogDatabaseTiein), and more.

One of the library’s major focuses is

database abstraction. Users are free to

choose which of the three abstraction

layers they want to use. The Database

component provides a wrapper for PHP’s

own database abstraction, PDO, which

standardizes the fairly quirky exceptions

thrown by PDO.

Besides this, Database has a second

abstraction layer, an SQL generator that

uses calls to methods to create SQL

statements independently of the under-

lying database. This supports transpar-

ent porting of applications from, say,

MySQL to Oracle.

The third abstraction layer is handled

by the PersistentObject package, which

implements object relational mapping

(ORM), giving users the ability to store,

load, and manipulate PHP objects di-

rectly in and from the database. In con-

eZ Components is a free enterprise-level PHP library that uses state-of-the-art language features. We show

you the library’s potential on the web and at the command line. BY TOBIAS SCHLITT

Easy PHP with the eZ Components library

TAKING IT EASY

eZ ComponentsCOVER STORY

44 ISSUE 87 FEBRUARY 2008

P
a
v
e
l L

o
s
e
v
s
k
y
, F

o
to

lia

044-047_ez-components.indd 44 13.12.2007 18:21:00 Uhr

45

trast to similar implementations of other

libraries, PersistentObject does not re-

quire the PHP classes of a persistent ob-

ject to inherit from a defined standard

class. This makes it possible to configure

arbitrary objects as persistent without

 affecting the inheritance hierarchy.

The DatabaseSchema component is

also for database operations; it supports

abstract storage of database structures

and creation of structures in a database.

All of the database components cur-

rently support MySQL, PostgreSQL,

SQLite, and Oracle. The next version will

have support for Microsoft SQL Server.

Graphics
eZ Components also has components for

handling graphics. The ImageAnalysis

and ImageConversion components ana-

lyze and convert image files, making it

easy to scale and crop images, change

color spaces, and convert between for-

mats with just a couple of steps. Effects

give users the ability to create thumb-

nails or add borders, noise, swirls, and

watermarks. Both components are mod-

ular and can use the GD PHP extension,

as well as ImageMagick back-ends.

The Graph component handles the

 visualization of static data, generating

line, bar, and pie charts. There is no

need to do without 3D look or highlight-

ing effects (which you may be familiar

with from various office packages). Any

output format supported by the GD ex-

tension is fine, as are the SVG XML vec-

tor format and

Adobe Flash (via

the PHP Ming

extension).

Finally, let’s not

forget the Console-

Tools component,

which is the basis

01 ini_set("include_path", "/

dev/ez/ezcomponents:.");

02

03 require_once "Base/base.php";

04

05 function __autoload(

$className)

06 {

07 ezcBase::autoload(

$className);

08 }

Listing 1: Integrating eZ
Components

01 $output = new ezcConsoleOutput();

02

03 $output->formats->error->color = "red";

04 $output->formats->error->style = array("bold");

05 $output->formats->error->target = ezcConsoleOutput::TARGET_STDERR;

06

07 $input = new ezcConsoleInput();

08

09 $options["help"] = new ezcConsoleOption("h", "help");

10 $options["help"]->isHelpOption = true;

11

12 $options["server"] = new ezcConsoleOption("s", "server");

13 $options["server"]->type = ezcConsoleInput::TYPE_STRING;

14 $options["server"]->shorthelp = "The server to fetch mail from.";

15 $options["server"]->longhelp = "The POP server to fetch mail

from.";

16 $options["server"]->mandatory = true;

17

18 // ...

19

20 $options["verbose"] = new ezcConsoleOption("v", "verbose");

21 $options["verbose"]->type = ezcConsoleInput::TYPE_INT;

22 $options["verbose"]->default = 1;

23 $options["verbose"]->shorthelp = "The verbosity of this program.";

24 $options["verbose"]->longhelp = "Verbosity of 1 is standard and

means normal info output. 0 will switch info output off.";

Listing 2: eZ Components at the Console

COVER STORYeZ Components

45ISSUE 87FEBRUARY 2008

044-047_ez-components.indd 45 13.12.2007 18:21:22 Uhr

for the sample application. ConsoleTools

provides classes that format output on

the shell, along with a mechanism for

handling command-line parameters.

Installing eZ Components
The easiest way to install eZ Compo-

nents is to use the Pear Installer, in-

cluded with recent versions of PHP:

pear channel-discover U

components.ez.no

pear install eZComponents

If you prefer not to run the Pear Installer,

you can download the current eZ Com-

ponents package from the website [1],

and unpack it. Also, you will need to en-

able the eZ Components autoload mech-

anism, which automates access to all

component classes. Listing 1 shows the

code for this. The only class you need

to add manually is the main class for the

Base components. eZ Components han-

dles the rest automatically. Don’t forget

to modify the include_path entry in Line

1 for your own system.

To demonstrate the eZ Components li-

brary, I’ll create a simple program that

forwards email. The program expects

various command-line parameters,

which it uses to establish a connection

to an IMAP server, retrieve the messages

from the server, compact the messages

to a digest, and delete the messages.

Add a cronjob, and this would give you

a neat way of retrieving messages from

a second mailbox and forwarding them

to your main mailbox.

Listing 2 first initializes an ezcConsole-

Output-type object, which later handles

the text output. The script defines a new

format called error in the object’s for-

mats attribute to enable bold, red type

for standard error output (STDERR).

This is followed by the configuration of

the console parameters, which is han-

dled by the ezcConsoleInput instance.

Listing 2 then creates the mandatory

help option.

The next option is addressable in the

shell as --server, or -s for short; it expects

a string type value for the host running

the IMAP server you want to query. The

script additionally defines a short and an

extended help text for this option and

tags them as mandatory.

If an option is missing when the pro-

gram is called, eZ Components throws

an exception. This is why the help op-

tion was explicitly defined in the listing.

Otherwise, you would just see an error

message if you called php mailer.php

--help.

The complete source code [3] defines

three other options in the same way:

01 foreach($options as $option)

02 {

03 $input->registerOption($option);

04 }

05

06 try

07 {

08 $input->process();

09 }

10 catch (ezcBaseException $e)

11 {

12 $output->outputLine($e->getMessage(),

"error");

13 die(-1);

14 }

15

16 if ($input->getOption("h")->value !== false)

17 {

18 $output->outputLine($input->getHelpText(

"Forwarwds mail from the console."));

19 exit(0);

20 }

21

22 $output->options->verbosityLevel = ($verbosity =

$input->getOption("v")->value) === false ? 1 :

$verbosity;

Listing 3: Handling Program Options

01 try

02 {

03 $receiver = new ezcMailImapTransport(

04 $input->getOption("s")->value

05);

06 $receiver->authenticate(

07 $input->getOption("u")->value,

08 $input->getOption("p")->value

09);

10 $receiver->selectMailbox("Inbox");

11 }

12 catch (ezcMailException $e)

13 {

14 die($output->formatText($e->getMessage(),

"error"));

15 }

16

17 $receiver->status($num, $size);

18

19 $output->outputLine("Fetching $num messages with

a size of $size Byte.", "default", 1);

20

21 $rawMails = $receiver->fetchByFlag("UNDELETED"

);

22 $parser = new ezcMailParser();

23 $mails = $parser->parseMail($rawMails);

Listing 4: Retrieving Email

eZ ComponentsCOVER STORY

46 ISSUE 87 FEBRUARY 2008

044-047_ez-components.indd 46 13.12.2007 18:21:28 Uhr

• -u/--user for specifying the user name

on the IMAP server,

• -p/--password for the password and

• -t/--target for the target email address.

One option that differs from the rest is

-v/--verbose: it is not defined as manda-

tory, it does not expect a text-type value

(rather, an integer), and it assumes a de-

fault value of 1 if the user fails to supply

a value.

Listing 3 processes the command-line

parameters for the script. The script

starts by registering the parameters that

have been generated in the ezcConsole-

Input object before going on to call the

process() method. The input object

throws an exception if the user passes in

invalid flags. The script catches the error

and outputs the error text before quitting

the program. This is the first appearance

for the output object defined in Listing 2.

The text for this exception is formatted

as an error $output->outputLine(...)

and output on STDERR.

After successfully processing the op-

tions, the sample program checks to see

whether --help is set, and if so, the pro-

gram outputs the help text created by

ezcConsoleInput ($input->getHelp-

Text()). Finally, Listing 3 sets the verbos-

ityLevel for the ezcConsoleOutput object.

After the ConsoleTools component has

provided the required credentials, the

sample script can now retrieve email

from the IMAP server. To retrieve email,

the script first instantiates the ezcMailI-

mapTransport class in Listing 4; the class

constructor expects the hostname of the

IMAP server. A similar class exists for

 retrieving mail from POP mailboxes. It

then goes on to authenticate the script

against the server and selects the INBOX.

The $receiver->status() call returns

the number of messages in the selected

mailbox and the total size. The program

displays both these values to the user,

unless the --verbose parameter is set to a

value of 0. The verbosityLevel is passed

in to $output->outputLine() at the point

where the script displays the message.

As verbosity is the third parameter for

outputLine(), you have to specify the

standard format default.

After this output, the IMAP transporter

object creates a kind of stream with all

the mail tagged with the IMAP UNDE-

LETED tag. An ezcMailParser type object

creates ezcMail type objects from them.

A call to $parser->parseMail() returns

the array of ezcMail- objects, which are

processed by the code in Listing 5.

Listing 5 starts by creating a new ezc-

Mail object and passing in the required

data, such as the sender, recipient, and

subject line. ezcMailAddress type objects

can optionally accept the recipient’s

name. When cast to a string type, these

objects generate an email address nota-

tion that complies with the relevant RFC.

The email body is handled by an ezc-

MailMultipartDigest type object, which

represents an email digest. The follow-

ing foreach loop adds the received emails

to the digest.

The program then creates another

transporter object, which sends the mail.

To do so, ezcMailMtaTransport calls the

built-in PHP mail() function. ezc-

MailSmtpTransport would set up a

socket to an SMTP server for this. An-

other status message with a verbosity-

Level of 1 confirms that the send action

was successful. Finally, the script deletes

the messages it has processed from the

server. To do so, it queries the email iter-

ator and calls the IMAP object's delete()

method for each mail. It also outputs a

status message to indicate that all the

messages have been deleted.

Conclusions
eZ Components is a component library

with a standardized and well-docu-

mented API. The variety of components

accelerates the development process and

ensures quality. The package is available

under a free license and can be sold with

almost any project, including commer-

cial ones. The project welcomes contri-

butions and requests, and if you get

stuck, the contributor community can

help via the developer mailing list. �

01 $forwardMail = new ezcMail();

02 $forwardMail->from = new ezcMailAddress(

"do-not-reply@is-geek.de");

03 $forwardMail->addTo(new ezcMailAddress(

$input->getOption("t")->value));

04 $forwardMail->subject = "Mail from " . date("Y/

m/d H:i");

05 $forwardMail->body = new ezcMailMultipartDigest()

;

06

07 foreach($mails as $mail)

08 {

09 $forwardMail->body->appendPart(new

ezcMailRfc822Digest($mail));

10 }

11

12 $sender = new ezcMailMtaTransport();

13 $sender->send($forwardMail);

14

15 $output->outputLine("Sent $num emails to

{$input->getOption("target")->value}.",

"default", 1);

16

17 foreach ($rawMails->getMessageNumbers() as $no)

18 {

19 $receiver->delete($no);

20 }

21

22 $receiver->expunge();

23

24 $output->outputLine("Deleted $num emails.",

"default", 1);

Listing 5: Packing and Sending Mail

[1] eZ Components http:// ez. no/

 ezcomponents

[2] PHP Unit: http:// www. phpunit. de

[3] Listings online: http:// www.

 linux- magazine. com/ Magazine/

 Downloads/ 87/ eZcomponents

INFO

COVER STORYeZ Components

47ISSUE 87FEBRUARY 2008

044-047_ez-components.indd 47 13.12.2007 18:21:29 Uhr

