
73

M
any Linux servers work in het-

erogeneous environments,

serving Windows clients that

use MS Outlook for mail and calendar

functions. Even if a new groupware sys-

tem is introduced, the widespread use of

Windows clients sometimes makes Out-

look an inescapable alternative. Unfortu-

nately, Outlook uses the native Windows

Messaging Application Programming In-

terface (MAPI) for communication with

other applications, and the Outlook

 client is designed to talk to a Windows

Exchange server. This preference for

 Exchange makes the integration of

Linux-based groupware systems difficult.

Alternative groupware applications

such as Scalix, Kolab, and Open Ex-

change use an Outlook connector to

integrate with Windows clients running

Outlook. These tools convert Outlook’s

MAPI queries to other, partly proprietary

protocols. Apart from this, processing

 relies on services such as WebDav. In

many cases, each function has to be con-

figured separately on the client side, and

this leads to inflationary administrative

overhead. Additionally, this kind of inte-

gration only covers a small proportion of

Outlook’s functionality.

The Zarafa groupware server [1] takes

a different approach. Instead of convert-

ing Outlook requests, Zarafa offers a

comprehensive Microsoft-compatible

MAPI interface for Linux environments.

Complex conversion of requests is no

longer needed because the Zarafa server

talks MAPI, specifically MAPI4Linux.

Zarafa is a commercial groupware

server that runs on Linux. Because the

Zarafa server communicates directly

with Windows clients using a variant of

MAPI, it provides a high level of Outlook

compatibility with minimal client config-

uration. See the box “Buying Zarafa” for

a price summary as given on the Zarafa

website. Although these prices are cer-

tainly higher than free alternatives such

as Kolab, the cost of Zarafa compares fa-

vorably with the cost of Microsoft Ex-

change, and because the server runs on

Linux, you can avoid many of the issues

associated with running Windows server

systems. Contact the company for infor-

mation on local business partners and

support options.

MAPI4Linux
MAPI4Linux supports a compatible

 Exchange counterpart on Linux. Zarafa

comprises the MAPI4Linux library,

which controls access to the MAPI store,

at is core, and a collection of peripheral

tools. A MySQL database is used for

storage, and this makes it easier to back

up or replicate the data.

MAPI4Linux controls the read and

write operations. Direct access to the da-

tabase is not recommended because it

would break the caching and affect the

response time.

Open Interfaces
Zarafa relies on open interfaces and

tried-and-trusted server components; it

Zarafa replaces Microsoft Exchange on a Linux server and collaborates

with Outlook thanks to native MAPI support.

BY SEBASTIAN KUMMER AND MANFRED KUTAS

Linux groupware server natively serves Outlook clients

EXCHANGE
ALTERNATIVE

w
w

w
.o

n
lin

e
b
e
w

e
rb

u
n

g
.d

e
, F

o
to

lia
SYSADMINZarafa

73ISSUE 87FEBRUARY 2008

073-079_zarafa.indd 73 13.12.2007 16:07:05 Uhr

uses Postfix, for example, to send email

and Apache as its web server, making it

easy to integrate into environments that

already implement these services.

Figure 1 shows the Zarafa server’s

major components. The MAPI kernel is

surrounded by various connectors. The

figure shows the path an email takes

from physical reception by the Mail

Transfer Agent (MTA) through to the

Zarafa store. The MTA can be supple-

mented with various tools, such as spam

filters or virus scanners. When an in-

coming mail message is ready for deliv-

ery to the receiver, the MTA passes it on

to the Zarafa D(elivery) Agent. This pro-

cess is controlled by the mailbox_com-

mand variable in /etc/postfix/main.cf:

mailbox_command = U

 /usr/bin/zarafa-dagent "$USER"

For QMail, the ~/.qmail file needs:

| /usr/bin/zarafa-dagent U

 -q user_name

The -q option tells the D Agent to use

Qmail error codes in its reply. The mail

is then passed by the agent to MAPI-

4Linux, which converts it into a MAPI

store object for storage in the database.

Outlook Connection
The Zarafa MAPI provider gives Win-

dows clients that only speak the native

language of Microsoft’s Ex-

change server access to the

MAPI store. Figure 2 shows

the configuration menu.

SOAP messages handle

communications between

the MAPI provider and the

Outlook share on the server.

A proxy or Apache web

server transparently adver-

tises this service on Intranets

or the Internet. To allow this

to happen, you just need

the following entry in your

Apache configuration:

<IfModule mod_proxy.c>

 ProxyPass /zarafa U

http://127.0.0.1:236/

 ProxyPassReverse U

 /zarafa U

http://127.0.0.1:236/

 <Location /zarafa>

 Order Allow,Deny

 Allow from all

 </Location>

</IfModule>

This supports Outlook access

without VPN access or port forwarding

on the firewall. Connections between the

server and the client are simple web con-

nections. Using Apache’s own tools, you

can enable standard and SSL connec-

tions. Additionally, administrators can

restrict access to specific subnets. Figure

3 shows how Outlook is mapped to

MAPI4Linux.

Alternative Applications
Still Supported
You can continue to use POP or IMAP

clients like Mozilla Thunderbird. A POP/

IMAP gateway gives you access to the

email folders, which is easy to configure

as all you need to do is specify the ser-

vices and ports to enable in /etc/zarafa/

gateway.cfg. The gateway converts email

from the MAPI format to regular plain

text mail before it reaches the client.

Double conversion of mail – into MAPI

format for incoming mail, and back

again before being dispatched via the

Gateway – would appear to be a waste

of resources at first glance; however, the

benefits in terms of compatibility with

any component outweigh the overhead.

Alternative calendaring applications

such as Mozilla Sunbird are supported

thanks to the Zarafa iCalendar interface.

The iCal interface emulates server pro-

files to allow Sunbird to work with live

data from the Zarafa store.

Changes or new appointments are

 immediately stored in the MAPI store,

where they are available in real time

to all users via all supported interfaces.

Large Systems
A multiple-server setup is useful for

large installations with thousands of

users. Although you can’t install the

Zarafa core itself on multiple systems,

the service-based architecture does

Figure 1: Overview of the Zarafa server’s major com-

ponents.

MTA
(eg. Postfix, qmail)

Mail delivery
(eg. procmail)

A
n

tis
p
a
m

(e
g

. S
p

a
m

A
s
s
a

s
in

)

Spooler / dAgent

O
u

tlo
o
k
 S

h
a
re

P
H

P
 M

A
P

I

MAPI 4 Linux

MySQL

Groupware Server

Zarafa component Open Source component

POP3 / IMAP
Gateway

iCal
Gateway

A
n

tiv
iru

s
(e

g
. C

la
m

A
V

)

Figure 2: MAPI provider configuration menu.

The Zarafa website lists the following

prices:

• Base price for up to 5 users: EUR 300

(US$ 439)

• Every additional 5 users: EUR 150

(US$ 219)

• More than 100 users: 5 percent

 reduction

• More than 250 users: 10 percent

 reduction

• More than 1,000 users: 15 percent

 reduction

Municipalities receive a 25 percent re-

duction. An education version for

schools has a 25 percent baseline reduc-

tion, with greater discounts available for

higher volumes.

For updates and upgrades after the first

year, you’ll need to pay a yearly fee of 20

percent of the list price.

Buying Zarafa

ZarafaSYSADMIN

74 ISSUE 87 FEBRUARY 2008

073-079_zarafa.indd 74 13.12.2007 16:07:12 Uhr

 support the following configuration:

• Server 1: MySQL database

• Server 2: Zarafa core

• Server 3: MTA + antispam/ virus

• Server 4: web server

The Zarafa core server configuration

 defines the connection between the da-

tabase and the Zarafa core, which is the

only entity to talk to it. All the other

components can use TCP port 236 to

 access the core server.

The MTA server hands incoming email

to the delivery agent, which runs on the

MTA server and uses an SSL certificate

to authenticate with the Zarafa core

server. The web server follows a similar

approach to communicate with the

Zarafa core and thus bind the web com-

ponents to the MAPI store.

If your spam volumes are particularly

high, it might make sense to distribute

the MTA and antispam or antivirus soft-

ware to separate servers.

This scenario also shows how to run

the web server in the DMZ, while the da-

tabase and the Zarafa core reside on the

secure internal network.

Data Import
Zarafa offers various approaches to im-

porting data sets into a store. Using the

open source tool imapsync [2], you can

migrate data from other IMAP servers.

To do so, the admin users would create

a user in Zarafa and then use the Zarafa

IMAP gateway to handle the synchroni-

zation process.

If you need to migrate multiple users,

scripts could be the answer. For existing

Outlook systems, whether standalone or

with a Microsoft Exchange server, Zarafa

has its own migration tool (see Figure 4)

for importing the .pst files. This tool

must be run on a Windows system; it

has an unattended mode and can handle

about 7GB of data per hour.

Notifications
One of MAPI’s biggest strengths is its no-

tification mechanism, which servers can

use to push messages to clients. Changes

thus become visible on the system after

a short interval of less than a second and

do not require user interaction.

Network topologies often do not allow

servers to reach clients directly when

sending messages of this kind. To work

around this problem, the client opens a

long open http request (maximum 60

seconds), which waits for a result that is

relevant to the client. After this interval

has expired, the connection terminates;

the request then recommences immedi-

ately after this. Each Outlook client es-

tablishes four or five connections of this

kind to avoid interruptions.

If you have many clients, it makes

sense to increase the maximum number

of parallel connections for the web

server – Apache restricts this to 100 by

default. Because the lightweight requests

generate a couple of bytes of network

transfer traffic, this isn't a problem.

User Management
Internal user management is fine for

smaller environments. Currently, this in-

volves using a command-line tool that

also supports OpenLDAP and Active Di-

rectory. The admin simply adds required

attributes to a configuration file. Because

changes to the directory service do not

trigger events to update the data, Zarafa

authenticates each user at login.

Changes immediately take effect in the

store. For example, Zarafa will immedi-

ately create mail boxes for new users.

Admins can use policies and scripts to

tell the system how to react to other

kinds of change (such as when groups

are modified at directory service level).

Backup
The Zarafa Backup Utility does what its

name implies. The utility creates two

files: One contains the data, the second

contains an index. Creating a consistent

snapshot of the complete store without

blocking the database is not possible,

which means that elements that change

or are created during the backup process

are not included in the backup.

The current 5.20 version of Zarafa in-

troduces advanced backup options. The

new features include support for brick-

level backup. Individual stores, includ-

ing the public store, can now be backed

up fully or incrementally. Brick-level

backup now allows administrators to re-

store the whole store, individual

messages, or complete

directories.

Because it does not store the

meta data, this method is not

useful for disaster recovery. If

you do a full restore from the

brick-level backup, you use all

view settings, rules, and unique

user and store IDs. Also, admin-

istrators must create the user

MAPI profiles again from scratch

under Windows.

Information on other features,

such as synchronization tools for

PDAs (via SyncML), privilege

management via ACLs, or the

mobile web interface for HTML-

capable mobiles, is available on-

line [3].

Fortunately, Zarafa supports

not only commercial Linux dis-

tributions, such as Red Hat and

Novell SLES, but also Debian

and Ubuntu. Also, Zarafa 5 is

now available for 64-bit systems.

MAPI via PHP
Many online applications are

programmed in PHP, a program-

ming language that is an obvi-

ous choice due to its rapid devel-

opment potential and wide-

spread use. Figure 3: How Outlook maps to MAPI4Linux.

MAPI provider

SOAP

APACHE
(optional)

MAPI

MAPI 4 LINUX

Outlook

Outlook Share

Groupware Server

Client

Zarafa component

Open Source component

Microsoft component

SYSADMINZarafa

75ISSUE 87FEBRUARY 2008

073-079_zarafa.indd 75 13.12.2007 16:07:13 Uhr

Zarafa features programmed in PHP

include the web front end, Webaccess.

Webaccess resembles the Outlook client

and communicates directly with the

MAPI4Linux layer via the PHP-MAPI

module. PHP-MAPI has useful options

for adding groupware functionality to

open source solutions in areas such as

Customer Relationship Management

(CRM), Enterprise Resource Planning

(ERP), document management systems,

or wikis.

The module is a prebuilt .so file. The

PHP configuration file, php.ini, loads the

module like this: extension = mapi.so.

Developers can use this module to im-

plement MAPI functionality in PHP.

Zarafa also offers a detailed interface de-

scription online [4], and general infor-

mation on MAPI is available [5].

Although Zarafa stores data in a

MySQL database, the use of PHP-MAPI

is the recommended approach for access

by web applications to the MAPI store.

Figure 5 shows PHP-MAPI’s web server

integration.

Programmers can use special PHP

functions to connect to the store and,

for example, read its properties.

Z-Push
Previously, the only way to synchronize

data with a PDA was to use the cradle

and a desktop tool with SyncML. In

April 2007, Zarafa introduced Z-Push, an

open source implementation of Micro-

soft’s ActiveSync protocol.

PDAs with Windows Mobile 2003,

2005, and 6.0 can synchronize their local

contacts, email, appointments, and vari-

ous tasks with the server online via

GPRS or UMTS.

Zarafa Z-Push is based on

WAP Binary XML (WBXML),

like Microsoft AirSync, which

is used by the original; this is

a kind of low-overhead XML

for narrow bandwidths.

Users do not need to install

any additional software on

the PDA since Z-Push han-

dles synchronization na-

tively. Previously, back ends

integrated Zarafa and Mail-

Dirs. A comprehensive inter-

face description supports col-

laboration between Z-Push

and any groupware system.

Additionally, Z-Push now

supports IMAP as a back

end, bringing push services with IMAP

to cell phones for free [6].

PHP-MAPI Technology
Enterprises use a variety of Intranet ap-

plications that benefit from the ability

to display and modify appointments or

contacts from groupware. PHP-MAPI of-

fers the ability of integrating MAPI func-

tionality with existing web solutions.

Basically, you have two options for

 accessing the Zarafa server from a PHP

application: via a UNIX socket:

$zarafaserver = U

 "file:///var/run/zarafa"

or via the SOAP interface:

$zarafaserver = U

"http://url_zum_zarafaserverU

:236/zarafa".

To make it easier to log onto a server

via a socket, you can make the user who

runs the application a Zarafa admin,

thus enabling access to the store without

entering a password. This gives any PHP

script administrative access to the server,

but this method is not recommended for

security reasons.

Example of a PHP-MAPI
Application
Listing 1 is a sample calendar function

that shows how MAPI integration works

[8]. The first step is to set up a connec-

tion to the MAPI store:

mapi_openmsgstore_zarafaU

(string $user , U

string $password, U

string $server)

This example uses a socket connection.

Note that the application logs on to the

MAPI store as an administrative user

and that a password is not required to

authenticate.

Successful Login
A successful login returns an array with

two stores: the user’s private store with

data from the user’s own PIM and the

public store with data for shared use.

MAPI stores have a tree structure.

To access a branch or leaf, you need to

know its address. Properties are used for

addressing purposes. The mapi_prop_

tags() function creates addresses from

a type and an ID.

The mapitags.php file in the {webac-

cess}/mapi folder (for Zarafa 5) or in

Figure 4: The Zarafa migration tool can handle 2GB of

data per hour.

Figure 5: PHP-MAPI web server integration.

M
A

P
I

APACHE

PHP MAPI

MAPI

WebaccessMAPI MobileSync

M
A

P
I 4

 L
IN

U
X

Web Server

Zarafa components Open Source components

ZarafaSYSADMIN

76 ISSUE 87 FEBRUARY 2008

073-079_zarafa.indd 76 13.12.2007 16:07:14 Uhr

001 <?

002 //own definition file

003 require "mapidefs.php";

004

005 //connect to store and get properties of calendar

006 $store = mapi_openmsgstore_zarafa("john", "", "file:///var/run/zarafa");

007

008 $receivefolder = mapi_msgstore_getreceivefolder($store[0]);

009 $rcvFProps = mapi_getprops($receivefolder, Array(PR_IPM_APPOINTMENT_ENTRYID));

010

011 //get entryid of calender in binary form

012 $entryID = $rcvFProps[PR_IPM_APPOINTMENT_ENTRYID];

013

014 //get calendar folder

015 $folder = mapi_msgstore_openentry($store[0], $entryID);

016

017 //get contents of calender-folder

018 $contents = mapi_folder_getcontentstable($folder);

019

020 //guids for calender

021 $guid = makeguid("{00062002- 0000- 0000- C000- 000000000046}");

022 $guid2 = makeguid("{00062008-0000- 0000-C000-000000000046}");

023

024 //get ids of properties

025 $namedproperties = mapi_getIdsFromNames($store[0], array(0x820D, 0x820E, 0x8223,

026 0x8216, 0x8205, 0x8214, 0x8215, 0x8506, 0x8217, 0x8235, 0x8236, 0x8208, 0x8233),

027 array($guid, $guid, $guid, $guid, $guid, $guid, $guid, $guid2, $guid, $guid,

028 $guid, $guid, $guid));

029

030 // generate mapi like ids and put them in an array

031 $props[0] = mapi_prop_tag(PT_SYSTIME, mapi_prop_id($namedproperties[0])); //

032 Start

033 $props[1] = mapi_prop_tag(PT_SYSTIME, mapi_prop_id($namedproperties[1])); // End

034 $props[2] = mapi_prop_tag(PT_BOOLEAN, mapi_prop_id($namedproperties[2])); //

035 Recurring

036 $props[3] = mapi_prop_tag(PT_BINARY, mapi_prop_id($namedproperties[3])); //

037 Recurring data

038 $props[4] = mapi_prop_tag(PT_LONG, mapi_prop_id($namedproperties[4])); //

039 BusyStatus - [Free, Temporarily Occupied, Occupied, Not Available]

040 $props[5] = PR_ENTRYID; // unique meeting ID

041 $props[6] = PR_DISPLAY_TO; // Recipients

042 $props[7] = PR_SUBJECT; // Subject

043 $props[8] = mapi_prop_tag(PT_LONG, mapi_prop_id($namedproperties[5])); // label

044 $props[9] = mapi_prop_tag(PT_BOOLEAN, mapi_prop_id($namedproperties[6])); //

045 alldayevent

046 $props[10] = mapi_prop_tag(PT_BOOLEAN, mapi_prop_id($namedproperties[7])); //

047 private

048 $props[11] = mapi_prop_tag(PT_LONG, mapi_prop_id($namedproperties[8])); //

049 meeting

050 $props[12] = mapi_prop_tag(PT_SYSTIME, mapi_prop_id($namedproperties[9])); //

051 Start Recurring

052 $props[13] = mapi_prop_tag(PT_SYSTIME, mapi_prop_id($namedproperties[10])); //

053 End Recurring

054 $props[14] = mapi_prop_tag(PT_STRING8, mapi_prop_id($namedproperties[11])); //

055 location

056 $props[15] = mapi_prop_tag(PT_BINARY, mapi_prop_id($namedproperties[12])); //

Listing 1: PHP-MAPI Sample Application

SYSADMINZarafa

77ISSUE 87FEBRUARY 2008

073-079_zarafa.indd 77 13.12.2007 16:07:14 Uhr

{webaccess}/include/mapi (for Zarafa 4)

contains a list of constants.

Alternatively, you can use tools like

OutlookSpy [7] to search for the required

properties. If the programmer uses MAPI

include files from the directories we just

mentioned, there is no need to create ad-

dresses.

Once the connection to the store has

been set up, you can open the user’s

inbox to access all the objects in the

store:

mapi_msgstore_getreceivefolderU

(mapimsgstore $store);

The mapi_getprops() function reads the

properties of the required object. In this

case, it is an entry ID for the calendar.

mapi_msgstore_openentry() lets us cre-

ate a pointer to the calendar and access

further calendar object properties. mapi_

folder_getcontentstable() then opens the

messages in the folder.

Before you can start reading appoint-

ments, you need to generate the IDs for

the required properties (start, end, loca-

tion, and so on) using mapi_prop_tag()

and mapi_getIdsFromNames().

Restrictions
The example only shows appointments

for the month of September; it uses PHP-

MAPI restrictions to do so.

The restriction array contains a time

stamp for the start and end of the re-

quired period. Then, the array is passed

in to the MAPI request.

Now you know where the folder with

the calendar entries is, which appoint-

ment properties you want to query, and

what restrictions they are subject to.

The mapi_table_queryallrows() function

stores the relevant entries in a result

array, giving you the ability to display it.

Conclusion
Zarafa is a robust groupware server that

integrates seamlessly with existing Linux

environments. The core is supplemented

with open source components such as

Apache, Postfix, or MySQL.

Besides native Outlook access, clients

benefit from POP3, IMAP, or iCalendar

interfaces. PHP-MAPI gives developers

rapid access to data and the ability to

manipulate the data in the store.

Webaccess comes with an AJAX inter-

face and new functions. Because the fea-

057 timezone data

058 $props[16] = PR_BODY;

059

060 //restrictions' array

061 $restriction = Array(RES_OR,

062 Array(

063 // OR

064 // (item[start] >= start && item[start] <= end)

065 Array(RES_AND,

066 Array(

067 Array (RES_PROPERTY, Array(RELOP =>

068 RELOP_GE, ULPROPTAG => $props[0], VALUE

069 => $start)),

070 Array (RES_PROPERTY, Array(RELOP =>

071 RELOP_LE, ULPROPTAG => $props[0], VALUE

072 => $end))

073)

074),

075 // OR

076 // (item[end] >= start && item[end] <= end)

077 Array(RES_AND,

078 Array(

079 Array(RES_PROPERTY, Array(RELOP =>

080 RELOP_GE, ULPROPTAG => $props[1], VALUE

081 => $start)),

082 Array(RES_PROPERTY, Array(RELOP =>

083 RELOP_LE, ULPROPTAG => $props[1], VALUE

084 => $end))

085)

086),

087 // OR

088 // (item[start] < start && item[end] > end)

089 Array(RES_AND,

090 Array(

091 Array(RES_PROPERTY, Array(RELOP =>

092 RELOP_LT, ULPROPTAG => $props[0], VALUE

093 => $start)),

094 Array(RES_PROPERTY, Array(RELOP =>

095 RELOP_GT, ULPROPTAG => $props[1], VALUE

096 => $end))

097)

098),

099)

100); // global OR

101

102 $start = mktime(0, 0, 0, 9, 1, 2007);

103 $end = mktime(23, 59, 59, 9, 30, 2007);

104

105 //get the required calender items

106 $rows = mapi_table_queryallrows($contents, $props, $restriction);

107 foreach ($rows as $appointment) {

108 /* do something */

109 }

110 ?>

Listing 1: continued

ZarafaSYSADMIN

78 ISSUE 87 FEBRUARY 2008

073-079_zarafa.indd 78 13.12.2007 16:07:15 Uhr

ture scope is similar to that of Outlook,

many users have started to use Webac-

cess exclusively.

Z-Push gives PDAs continuous access

to the latest data.

The well-documented and completely

open interfaces facilitate the integration

of Zarafa with existing systems. Right

now, Zarafa is working on server-to-

server integration with CRM systems

such as SugarCRM and vTiger, thus

 providing the same data to all of these

systems in real time.

Zarafa is a commercial product, but it

is a complete groupware solution for a

fair price and development work is in

full swing. �

01 <?

02 /* Objects' definitions */

03 define ('PT_LONG', 3); /* Signed 32-bit value */

04 define ('PT_BOOLEAN', 11); /* 16-bit boolean (non-zero true) */

05 define ('PT_SYSTIME', 64); /* FILETIME 64-bit int w/ number of 100ns

periods

06 since Jan 1,1601 */

07 define ('PT_STRING8', 30); /* Null terminated 8-bit character string

*/

08 define ('PT_BINARY', 258); /* Uninterpreted (counted byte array) */

09 define ('PT_TSTRING', PT_STRING8); /* Alternate property type names

for ease of

10 use */

11

12 /* Property tags' definitions for standard properties of MAPI

objects.*/

13 define ('PR_SUBJECT', mapi_prop_tag(PT_TSTRING, 0x0037));

14 define ('PR_BODY', mapi_prop_tag(PT_TSTRING, 0x1000));

15

16 /* Message non-transmittable properties */

17 define ('PR_DISPLAY_TO', mapi_prop_tag(PT_TSTRING, 0x0E04));

18 define ('PR_NORMALIZED_SUBJECT', mapi_prop_tag(PT_TSTRING,

0x0E1D));

19

20 /* properties that are common to multiple objects (including message

objects));

21 * -- these ids are in the non-transmittable range */

22 define ('PR_ENTRYID', mapi_prop_tag(PT_BINARY, 0x0FFF));

23

24 /* Extra properties */

25 define ('PR_IPM_APPOINTMENT_ENTRYID', mapi_prop_tag(PT_BINARY,

0x36D0));

26

27 /* restrictions */

28 define('RES_AND', 0);

29 define('RES_OR', 1);

30 define('RES_PROPERTY', 4);

31

32 /* restriction compares */

33 define('RELOP_LT', 0);

34 define('RELOP_LE', 1);

35 define('RELOP_GT', 2);

36 define('RELOP_GE', 3);

37

38 /* array index values of restrictions */

39 define('VALUE', 0); // propval

40 define('RELOP', 1); // compare method

41 define('ULPROPTAG', 6); // property

42 ?>

Listing 2: Definition File

[1] Zarafa: http:// www. zarafa. com/

[2] ImapSync: http:// freshmeat. net/

 projects/ imapsync

[3] Zarafa features: http:// zarafa. com/

 features. html

[4] PHP-MAPI: http:// download. zarafa.

 com/ zarafa/ en/ zarafa_php_ext_5. 00.

 pdf

[5] MSDN-MAPI: http:// msdn. microsoft.

 com/ library/ default. asp?url=/ library/

 en-us/ mapi/ html/ ef00004c- 893c- 4136-

 8cd4-89b729b7401e. asp

[6] Z-Push: http://z-push.sourceforge.net

[7] Code listings: http:// www.

 linuxpromagazine. com/ resources/

 article_code

[8] OutlookSpy: http:// www. dimastr. com/

 outspy

INFO

Sebastian Kummer studied Com-

puter Science at HAW, the Univer-

sity of Applied Science in Hamburg

Germany. He has worked as a free

software developer for various en-

terprises since 2000.

Sebastian has also worked on

Zarafa migration and integration for

inmedias.it GmbH in Hamburg.

Since September 2006, Sebastian

has been working on developing

the mobile security design for the

colamo. org project.

Manfred Kutas studied Computer

Science at HAW, the University of

Applied Science in Hamburg Ger-

many. He works as a freelance de-

veloper, focusing on PHP and Java.

In the scope of the open source

 project, colamo. org, Manfred has

worked exhaustively with PHP-MAPI

and implemented read/ write access

to the Zarafa server for inmedias. it.

T
H

E
 A

U
T

H
O

R
S

SYSADMINZarafa

79ISSUE 87FEBRUARY 2008

073-079_zarafa.indd 79 13.12.2007 16:07:15 Uhr

