
50

The interim version 8.1 of the Intel
C++ Compiler (ICC) [1] intro-
duced the AMD64/ x86-64 archi-

tecture (EM64T for Intel). Version 9 is a
full-fledged major release with new
extensions and optimizations [2]. As in
previous versions, the compiler can han-
dle the IA-32, x86-64, and Intel Itanium
architectures. Intel’s own debugger, a
code coverage tool, and the Eclipse
developer environment round out the
package. An assembler is additionally
available for the Itanium CPU, although
we will not be discussing the assembler
in this article. Itanium developers have
not benefited from Eclipse integration
thus far.

The licensing model is similar to the
previous version. A non-commercial
license without support is available free
of charge for open source projects. Bina-
ries created with this version cannot be
sold. A license is required for commer-

cial development. Depending on the size
of the installation, you can either specify
the serial number or a license file. The
compiler can also use a network-based
Flex license manager. The Intel C++
compiler costs about 300 Euros from

 distributors or about 400 US dollars from
Intel.

SSP
Software-based Speculative Pre-Compu-
tation (SSP), as triggered by the -ssp

OpenMP [4] is an extensive standard that
adds expressions to the C, C++, and For-
tran languages to explicitly tell the com-
piler how to distribute programs across
parallel threads.

The central elements are the #pragma
directives, which provide instructions on
how the compiler should split up the
code into concurrent fragments. For
example, #pragma omp parallel tags a
block for parallel execution; shared()
specifies common variables, and pri-
vate() specifies the variables restricted to
exclusive use by a process.

The #pragma omp for schedule directive

specifies distribution across threads. The
#pragma directives thus tag a process-
ing loop for parallel execution.

The threads share the variables a, b, c,
and chunk; the iteration variable i is pri-
vate in each thread. The expression tells
the compiler to perform parallel execu-
tion of the for loop and to split the itera-
tion space into blocks of size chunk.

OpenMP defines more instructions to
specify parallelization, however, these
instructions are currently only imple-
mented by special compilers, typically in
clustering applications. Listing 1 shows
a short example of how to use OpenMP.

Box 1: OpenMP

B
M

W
 A

G

Intel presented Version 9.0 of

the C++ compiler for Intel pro-

cessors in June, raising the bar

for highly optimized code.

BY RENÉ REBE

COMPILER
RALLY

A look at the Intel C/ C++ Compiler 9.0

COMPILER
RALLY

Intel Compiler 9.0REVIEWS

50 ISSUE 59 OCTOBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

51

option, is a feature that prompted heated
discussions prior to the release. This
features involves the compiler adding a
number of auxiliary threads to the pro-
gram, which pre-compute a few instruc-
tions contained in the program to fill the
CPU instruction cache with data. This
method is claimed to be particularly
effective with hyper-threading.

SSP is just one of the so-called profile
guided optimizations. To enable profile
guided optimization, the developer first
has to compile the program with a spe-
cial instrument (-prof-gen-sampling), and
then run it against a representative set of
input data using profrun. Finally, the
developer recompiles the whole program
once more, referencing the data collected
by the previous processes [3].

In contrast to previous versions, -O2
or above now enables various inter-pro-
cedural optimizations, and the compiler
optimizes more loops. ICC gives the
developer even more feedback: the
reports about optimized loops and other
warnings are now more detailed. When
compiling multiple files, the compiler
now offers more optimization options.
Additionally, the -ipo option in the new
version now supports individual object
files when compiling multiple files.

RPM-based Installation
Version 8 of the Intel Compiler weighed
in at about 65 MBytes, but the current ver-
sion easily beats that at no less than 192
MBytes. The tarball comprises various
RPM packages for I-386, EM64T, and IA64.
It also includes the complete Eclipse plat-
form with the C Development Toolkit
(CDT) in versions for GTK and Motif.

A shell script takes care of installing
the packages, but problems have been
known to occur with distributions other
than the RPM-based Red Hat and Suse
distributions officially supported by
Intel. On some systems, the script simply

stated that it did not recognize the
machine type, glibc, and the kernel. In
contrast, the install ran without any
trouble on the Debian-based Ubuntu dis-
tribution. Whatever distribution you
have, you will need the rpm command
to unpack the RPM archive.

All in all, the compiler is not as easily
managed as GCC, which integrates so
neatly with the system. ICC will not look
in the library and header directories of
its own installation by default, and this
means setting -I/opt/intel/cc/9.0/include,
and possibly -I/opt/intel/cc/9.0/include/
c++, in many cases. As the programs
are typically linked against the ICC run-
time libraries, you will probably want to
set the LD_LIBRARY_PATH environmen-
tal variable to /opt/intel/cc/9.0/lib when
running ICC.

This is normally done by source/opt/
intel/cc/9.0/bin/iccvars.sh, either added
to the .profile or entered manually at the
console. To make things easier, these
defaults can be stored in the .../bin/icc.
cfg and .../bin/icpc.cfg configuration
files. Setting the LD_LIBRARY_PATH will
save you an entry in /etc/ld.so.conf. By
default, ICC uses the C++ system library,
although it does provide its own imple-
mentation. The -cxxlib-icc and -cxxlib-gcc
options support explicit switching.

ICC Version 8.1 or newer understands
the -march and -mcpu GNU compiler
options. However, Intel uses a somewhat
cryptic notation, -x{K|W|N|B|P}, based
on Intel’s internal codename: K stands

for the Pentium III (Katmai), B for the
Pentium M (Banias). The -ax handles
more than one CPU type allowing ICC to
translate code passages multiple times –
once for each CPU type – wherever it is
worth the effort. When a program is
then launched, optimized blocks are
enabled to match the processor type.

Cooperation with GCC
In principle, it is possible to compile
mixed object files for a single program
using ICC and GCC, for example, if ICC
refuses to compile a file or if GCC pro-
duces far superior code. If you use icc for
the linking process, the linker will bind
the required Intel runtime libraries with-
out being told to do so:

icc -o prog main.o math.o

However, if you want to link these object
files using gcc, you will need to explicitly
specify the auxiliary libraries. GCC needs
additional linker parameters:

-L/opt/intel/cc/9.0/lib/ -lirc

Behind the scenes, the Intel Compiler for
IA-32 uses the GNU Binutils anyway.

Manual and Automatic
Parallelization
The OpenMP working group [4] devises
specifications to provide parallelization
aids to compilers for C, C++, or Fortran
programs. The -openmp option tells the

01 01

02 #include <omp.h>

03 02

04 main ()

05 03

06 {

07 04

08 const int N = 10000;

09 05

10 int i;

11 06

12 float a[N], b[N], c[N];

13 07

14 const int chunk = 100;

15 08

16

17 09

18 #pragma omp parallel
shared(a,b,c,chunk) private(i)

19 10

20 {

21 11

22 #pragma omp for
schedule(dynamic,chunk) nowait

23 12

24 for (i=0; i < N; i++)

25 13

26 c[i] = a[i] + b[i];

27 14

28

29 15

30 } /* End of parallel block */

31 16

32 }

Listing 1: OpenMP Example

ICC -O2 -O2 -ip GCC
Botan (171) 36 0 2
Bzip2 0 58 6
GnuPG 132 192 6
Gzip 48 62 2
Lame 118 112 22
Libmad 24 24 4
OpenSSL 148 170 30
Tramp-3D (30) 8 0 2

Table 1: Vectorized Loops

REVIEWSIntel Compiler 9.0

51ISSUE 59 OCTOBER 2005W W W. L I N U X- M A G A Z I N E . C O M

Intel compiler to produce programs that
parallelize CPU intensive fragments
(such as loops) on Unix systems. When
the program is launched, the binary uses
the Pthread library to create multiple
threads, which then process these frag-
ments in parallel. This makes better use
of multi-processor systems (see the
“OpenMP” box).

ICC 9 detects segments of code in
which individual threads can be parallel-
ized without help from OpenMP. The
-parallel option enables automatic paral-
lelization. This means users who want
to support multiple CPUs or CPU cores,
without modifying the source code, can
now expect the compiler to accelerate
their programs. Table 1 shows the num-
ber of loops the compiler vectorizes per
benchmark. The values in brackets are
the expressions caused by code from the
C++ STL library.

Debugging Tips
The detailed warnings issued by the
Intel compiler are another useful aid for
developers. In some cases they say a lot
more than warnings issued by the GNU
compiler, particularly in the case of con-
stant expressions, use of temporary
objects, comparisons between floating
point numbers or loss of precision in
computations and allocations. Just like
in previous versions, the Intel compiler
quotes the source code and tags the
character at the point where the warning
or error occurred. This is a useful aid to
debugging (Listing 2, lines 3 and 4).

The debugger included with the ICC
package has a text-based interface, just
like its GDB counterpart, but it also has
a minimal graphical front-end. The IDB
debugger normally runs in DBX mode,
where it expects input in a syntax

defined by Intel. When launched with
the -gdb flag, it provides GDB (Version
6.1 or higher) compatibility.

Spartan GUI
When you launch IDB with the -gui option,
it comes up with a fairly antique looking
graphical user interface (see Figure 1).
Unfortunately, the GUI provides very little
automation support and does not simplify
work much compared with the console.
The GUI debugger does not give you any-
thing in the way of visualizations.

In contrast to GDB, IDB does not sup-
port auto-completion using the tab key.
But you can set breakpoints in instantia-
tions of C++ templates, provided they
have not been tagged inline by the
compiler. GDB might accept these break-
point entries but will not interrupt pro-
gram execution when it reaches them.

Conclusions
We compared the ICC 9.0 to GCC 3.4
and 4.0 by compiling some representa-
tive Open Source tools (including
OpenSSL, Libmad, Bzip2, and Gzip),
and we found that recent versions of
GCC have reduced or eliminated the per-

formance advantage once held by ICC.
Our tests didn’t specifically include the
high-end hardware or hardware-opti-
mized software sometimes associated
with ICC. ICC 9.0 still has an advantage
in case of automatic vectorization and
clearly demonstrates how well compiled
C and C++ code can be distributed
across SIMD (Single Instruction, Multi-
ple Data) units. Support for OpenMP or
automatic parallelization are beneficial
for high performance computing. And
the Intel Compiler’s generous warnings
allow developers to detect potential
problems in the development phase
rather than at the debugging stage. ■

01 01

02 lib/__dtostr.c(47): remark
#1572: floating-point \

03 02

04 equality and inequality
comparisons are unreliable

05 03

06 if (d==0.0) {

07 04

08 ^

Listing 2: Detailed ICC
Warning

[1] Intel C++ Compiler http:// www. intel.
com/ software/ products/ compilers/ clin

[2] Overview of ICC Optimizations: http://
www. intel. com/ software/ products/
compilers/ docs/ qr_guide. htm

[3] Ingo A. Kubbilun, “Kernel Tuning:
Compiling the Linux kernel with the
Intel compiler”: Linux Magazine 08/
04, pg. 44.

[4] OpenMP: http:// www. openmp. org

INFO

Figure 1: The Intel Compiler front-end is functional but not exactly modern.

Intel Compiler 9.0REVIEWS

52 ISSUE 59 OCTOBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

