
Responsible admins search for files
that belong to non-existent users or
groups in the process of cleaning up. The
following command will take care of that
chore: find / -nouser -o -nogroup. The -o
option is the logical OR operator, which
links the two expressions, -nouser and
-nogroup. Another trick that is extremely
useful for admins is searching for files
with a set UID or set GID bit using find /
-perm +6000 -ls. The -ls appended to
this command runs ls -lisd for each file.

Executing Commands
-exec allows you to use filenames as
arguments and even to create miniature
shell scripts. But watch out for the pit-
falls: using this functionality as root in
public directories (like /tmp or the home
directories) is not a good idea. There is a
short delay between finding files that
match the search parameter and running
the appropriate command, and crafty
attackers might be able to exploit the
gap. In the past there have been numer-
ous attacks on Unix installations that use
find to clean up the /tmp directory.

If you are looking for files in Linux,
the command line is your best option
for quick and reliable results. GUIs

such as KDE (Figure 1) typically lack
comparable functionality, flexibility, and
speed.

The most important command for file
searching is find. Without any flags
specified, the tool will just find all the
files below the current directory. If you
want to search another directory, simply
specify the directory name as the first
argument. For example, find /home will
output a list of the files and directories
below /home.

But find really begins to shine when
you start feeding it options. The -name
pattern argument allows users to tell find
to output files that match the pattern.
For example, find ~ -name '*firefox*'
finds all the files in a user’s home direc-
tory that include the firefox string in
their names.

It makes sense to enclose arguments in
double, or at least single, quotes. This
stops the shell from expanding parame-
ters such as *firefox*.

Modern computers with their multi-

ple Gigabyte hard disks store

thousands of files. A lost file can

cause a lot of work, and it can also

pose a security risk. Fortunately, Linux

has some versatile tools for finding

those “lost files.”

BY MARC ANDRÉ SELIG

Insider Tips: Find and Locate

Lost and Found

62 February 2005 www.linux-magazine.com

Admin Workshop: Finding FilesSYSADMIN

Options, Tests, Actions
find recognizes three types of argu-
ments: options, tests, and actions.
Options influence the behavior of find
itself, for example, by restricting the
number of subdirectory levels to search,
or restricting the search to a single
partition. Tests allow the user to restrict
the search to specific files, for example,
files that are less than a week old, find
-mtime -8; or files that are over a week
old, find -mtime +7.

Actions influence the way the results
are output. The following action -exec
command would pass the names of 
the files that find discovers to the
program command. 

Actions also support logical operators,
allowing admins to specify complex out-
put behavior. This said, administrators
are likely to use tests more than they use
the other types of arguments. The test 
might restrict the command to a spe-
cific type, such as -type f (to find 
only files), -type d (to find only
directories), or -type l (to find only sym-
links).



The -exec parameter is followed by a
command including a {} placeholder.
The program replaces the brackets with
the name of the file that matches the
search. A semicolon terminates the com-
mand. You need to escape the semicolon
with a backslash to stop the shell from
interpreting it. The following command
is a variant on the DOS ren *.txt *.bak
command, which renames files with the
*.txt extension to *.txt.bak:

$ find . -name '*.txt' U

-exec mv {} {}.bak \;

If your requirements are more complex,
you might prefer to use the output from
find in a shell script. The -printf com-
mand can help you. The following
command creates a file like the one
shown in Listing 1:

$ find /home/mas -type f U

-name '*.txt' -printf "mkdir U

-p /export/backup/%h\ncp U

-p %p /export/backup/%h/U
%f.copy\n\n"

Locate for Quicker
File Finding
In addition to the features
mentioned here, find has a
whole range of options that
we cannot look into. How-
ever, the program has one
major drawback: it is slow.

find parses the search directories one at
a time, and it may also need to parse the
file inodes to perform the tests you
specify. If you only need to search a sub-
section of your home directory with a
few hundred files, you will not notice a
delay. But if you are looking for a file
that is hidden somewhere on your sys-
tem, find may need to search through
thousands and thousands of inodes –
understandably, this can take some time.

Locate solves this problem by creating
an index of the files stored on a machine
and storing their names in a central data-
base. The tool does not need to read
inodes to perform the search; instead it
just searches the database file. This
search typically returns results within a
fraction of a second, removing the need
to wait for minutes and also avoiding
any possible effect on performance for
users and services.

Locate has a few limitations, so in
many cases, it makes sense to keep on
using find. Instead of the complex com-
mand line syntax that find offers, locate

only supports primitive searching for file
name components (this is all the data-
base stores, in fact). The locate tool
supports wildcards, like the question
mark for a single character and the aster-
isk for any number of characters. These
locate wildcards can also represent the
slash character (in contrast to shell wild-
cards):

$ locate /home/mas/*mail*
/home/mas/.fetchmailrc
/home/mas/.procmaildata-bulk
/home/mas/.procmaildata-inbox
/home/mas/.procmailrc

There are two trivial requirements for
using locate, but they can be trouble-
some nonetheless. First of all, not all
Linux distributions install this GNU util-
ity. Secondly, the database is typically
updated by cron [1]. If you switch off
your computer at night, and if your dis-
tribution does not use Anacron [1] or a
similar tool to catch up with cronjobs
that it has missed, users will need to
update the database manually using the
updatedb command. ■

63www.linux-magazine.com February 2005

SYSADMINAdmin Workshop: Finding Files

[1] Marc André Selig,
“Admin Workshop: Cron, At, Anacron”,
Linux Magazine #49, p 60

INFO

Locate uses a central database, which can
lead to a security issue in some environ-
ments. If a user wants to hide a file, that user
typically sets the permissions on the super-
ordinate directory (chmod go-rwx).This
makes the files invisible to commands like
find and ls, except for the owner and root, of
course.

However, if the file is in the locate database,
because updatedb was launched with root
privileges (via the crontab or by root), it
becomes visible to everyone. Although other
users only get to see the filename, even this
could be secret in some circumstances.

Genuine multiuser systems can use the
--localuser and --netuser parameters when
calling updatedb.The tool expects a user
name as an argument.The user name
should be nobody, for example, a system
user with very limited privileges.This means
that the locate database will only have a
minimum of visible files.

Other People’s Files

01 mkdir -p /export/backup//home/mas
02 cp -p /home/mas/.emacs

/export/backup//home/mas/.emacs.copy
03
04 mkdir -p /export/backup//home/mas
05 cp -p /home/mas/.fetchmailrc /export/

backup//home/mas/.fetchmailrc.copy

Listing 1: Find-generated script

Figure 1: The KDE program KFind gives you an excellent front-end for file searching, but it cannot match
the flexibility of find.


