
58

It’s not so long ago that users had to
write their own device drivers to add
hardware. But with the standardiza-

tion of USB, and with fully-functional
hot-plugging support in kernel 2.6,
things have become far easier.

The temperature sensor used in this
article, a Dallas Semiconductor DS18S20
([3]), can be controlled via the one-wire
bus, which is driven by a USB dongle at-
tached to the computer. The free owfs
control software at [2] can request data
via a Perl interface. Instead of one-wire,
the bus should really be called two-wire,
as two thin copper wires (typically in a
single sheathing) connect the sensor to
the USB dongle (see Figure 1). At the
other end there is a western connector
(RJ11), which plugs into the USB dongle.

The DS18S20 temperature sensor is
available from most electronics stores for

about US$5 (for example from digikey.
com). It can handle a temperature range
between -55°C and +125°C. The
DS9490R one-wire USB dongle, to which
multiple sensors can be connected using
western plugs, costs about US$15 to
US$25 (at hobby-boards.com for exam-
ple).

The owfs project ([2]) at Sourceforge
offers a number of interfaces for reading

temperature values from the sensors.
One uses the FUSE user filesystem and
maps the sensor data on the filesystem,
much like the /proc hierarchy in Linux.
Figure 2 shows what kind of data gets
transferred from a dongle with two at-
tached sensors. You can read the temper-
ature values and also the unique sensor
IDs, type designations, and other things.
The sensor housing contains a micro-
controller with surprising capabilities.

Measured values can be read simply
by running cat against the FUSE-con-
trolled files, although I used perl -ple1 to
add a newline to the output in Figure 2.
Below the 10.B2A7C7000800/tempera-
ture entry, you can see the value mea-
sured by the first sensor, 22.8125 degrees
Celsius. The second sensor with the ID

Linux lets tinkerers connect their hardware creations to computers.

We’ll show you how you can use a simple Perl interface to check the

temperature of your home or office while you’re away.

 BY MICHAEL SCHILLI

Reading temperature sensors with Perl

HOW COOL IS PERL?

Figure 1: The temperature sensors connect to the USB dongle via the one-wire bus.

OWFS

USB Hotplugging

Linux

USB Dongle DS9490R
USB

DS
18

S2
0

DS
18

S2
0

Temperature Sensors

One Wire Bus

Perl: Temperature SensorsPROGRAMMING

58 ISSUE 65 APRIL 2006 W W W. L I N U X- M A G A Z I N E . C O M

of 10.E0E3C7000800, which I left outside
overnight in San Francisco, returns a
cooler value of 14.4375 degrees (it never
gets really cold in California). The type
entry gives us the sensor type designa-
tion ("DS18S20"); this allows you to
query the type of sensor connected to
the one-wire bus via the interface. The

vendor, Dallas, has all kinds of equip-
ment on sale, including switches, and
voltage and current meters, which can
all be attached to the same one-wire bus.

Fire Up Your Soldering Iron
The USB dongle has a western socket
(RJ11). To connect the three-legged sen-

sors to the socket, I first had to solder a
long wire with a western plug onto the
temperature sensor pins.

The easiest way of doing this is to buy
a normal phone extension lead with
plugs at both ends, and just cut off one
end with wire cutters. Then strip the in-
sulation and you should see either two

Figure 2: Querying the one-wire USB dongle and attached tempera-

ture sensors at the command line.

Figure 3: Two sensors connected to a one-wire USB dongle via a

phone line splitter; the dongle plugs into the Linux system.

advertisement

PROGRAMMINGPerl: Temperature Sensors

or four thin wires.
We will just be using the red and

green wires, so we can just cut the re-
maining ones. The temperature sensor
has three pins, one of which is not
needed – this is the pin on the right
(when the flat side of the sensor case is
facing towards you with the pins point-
ing down). This pin is used to provide a
power supply to the sensor, but the sen-
sor is quite happy to use the current
flowing through the data line ([8]). You
can use wire cutters to remove the su-
perfluous pin. Then go on to prepare the
telephone wire by adding heat shrink-
able tubing, as shown in Figure 4. We
will be heating this tubing later to shrink
it, making the appearance of the sensors
easier to live with.

Now solder the green inner wire of the
telephone lead onto the left pin of the
DS18S20, and solder the red wire onto
the pin in the center. Hold your solder-
ing iron near the two red inner heat
shrinkable tubes to shrink them over the
stripped wire ends. If the tubing does
not shrink as much as you would like,
you can always add some insulating
tape. This is just to prevent the bare
wires touching and causing a short cir-
cuit. Then adjust the position of the

thicker (yellow)
heat shrinkable
tubing until you
can just see the tip
of the sensor, and
follow the same
procedure to heat-
shrink the tubing.
Figure 5 shows
you the finished
sensor; you can ei-
ther plug the tele-
phone connector
directly into the
dongle, or you can
use an extension,
if you have more
than one sensor
(Figure 3).

Finding the
Sensor
For test purposes,
I will now leave
one sensor in the
room, while rout-
ing the other
through the win-

dow outdoors. The owfs project provides
a generic Perl interface in the form of the
OW module. The module in Listing 1
customizes the module to match the
type of temperature sensor we will be
using.

At first, we have no way of knowing
how many devices are attached to the
bus, which of them are temperature sen-
sors, and what their unique IDs are. The
discover method, which is called by the
new constructor, finds this out for us by

opening the type entries for all the de-
vices attached to the bus and checking
for a DS18S20. OW::init('u') then tells
the module to contact the USB dongle,
and the following call to the tempera-
tures() method returns pairs of sensor
IDs and measured temperature values.
The destructor in line 49 calls OW::
finish() to close the connection to the
USB dongle.

The script in Listing 2 shows a typical
sensor application. It uses the RRDTool::
OO module from CPAN to provide an ob-
ject-oriented interface to Tobi Oetiker’s
rrdtool.

Without specifying any options, this
script reads all the sensors and stores the
current temperature values in a round-
robin database. If the database does not
exist, the create method in line 37 of
the script creates the database with two
data sources, “Inside” and “Outside,” for
the temperature inside the room and
the temperature outside the window.
Lines 23 and 25 map the sensor IDs to
these intuitive names. The IDs are glob-
ally unique; any sensors you buy will
have different IDs.

The step parameter in Line 38 sets the
refresh interval to 300, that is, 300 sec-
onds or 5 minutes; the database stores
5000 values before it starts to overwrite
the older values. Reading and refreshing
starts in Line 83 using the methods pro-
vided by OWTemp, and update() from
RRDTool::OO.

Lines 23 and 25 map the non-intuitive
sensor IDs to human-readable values:
“Outside” and “Inside.” It is easy to find
out which sensor has which ID by just at-
taching one sensor, and then viewing the
directory structure, as shown in Figure 2.

If you call rrdmon with the -g parame-
ter, it creates a graph of the temperature
curve from the RRD data from both sen-
sors and stores it in the /tmp/tempera-
ture.png file (Figure 8). The inside sen-

Figure 5: The finished sensor in the heat-shrunk tubing.

Figure 7: … enter the command to enter the #sftemp channel.

Figure 6: The gaim IM cli-

ent speaks the IRC proto-

col. Just create an

account, click “Online,”

and …

Figure 4: Before soldering: green connects to the left pin and red to

the right pin on the DS18S20.

Perl: Temperature SensorsPROGRAMMING

60 ISSUE 65 APRIL 2006 W W W. L I N U X- M A G A Z I N E . C O M

sor is shown in red, and the outside sen-
sor in blue.

Shouting Out
If you prefer remote, text-based access to
the temperature output (say, you are on
vacation and want to know whether you
have left the oven on), you can write an
IRC bot like the one shown in Listing 3.
The bot connects to the IRC server at irc.
freenode.org and opens a chatroom
called #sftemp.

To dispel your worries, so that you can
get on with your vacation, just launch

an IRC client or the gaim IM
client to visit the bot in its
chatroom. Figure 6 shows the
gaim configuration and Fig-
ure 7 gives you the command
for entering the chatroom,
where the bot is waiting for
you to enter the "temp" key-
word. The bot listens to the
conversation in the chat-
room, and if anyone says "temp", it ex-
tracts the last temperature values from
the RRD archive and sends them back to
the chatroom (Figure 9).

Bot::BasicBot is a good example that
shows you how to complete highly com-
plex tasks with a CPAN module and just
a bit of code. You just derive a class from

001 #############################

002 package OWTemp;

003 # Mike Schilli, 2005

004 # (m@perlmeister.com)

005 #############################

006

 007 use Log::Log4perl qw(:easy);

008 use OW;

009

 010 #############################

011 sub new {

012 #############################

013 my ($class, @options) = @_;

014

 015 my $self =

016 { type => "DS18S20", };

017

 018 bless $self, $class;

019

 020 OW::init('u');

021

 022 $self->{devices} =

023 [$self->discover()];

024

 025 return $self;

026 }

027

 028 #############################

029 sub temperatures {

030 #############################

031 my ($self) = @_;

032

 033 my @temperatures = ();

034

 035 for my $dev (

036 @{ $self->{devices} }) {

037

 038 my ($val) = owread(

039 "$dev/temperature");

040 $val =~ s/\s//g;

041 push @temperatures,

042 [$dev, $val];

043 }

044

 045 return @temperatures;

046 }

047

 048 #############################

049 sub DESTROY {

050 #############################

051 OW::finish();

052 }

053

 054 #############################

055 sub discover {

056 #############################

057 my ($self) = @_;

058

 059 my @found = ();

060

 061 for my $entry (owread("")) {

062 DEBUG

063 "Found top entry '$entry'";

064 next if $entry !~ /^\d/;

065

 066 my ($type) =

067 owread("$entry/type");

068

 069 DEBUG "Found type $type";

070 next

071 if defined $type

072 and $type ne

073 $self->{type};

074 push @found, $entry;

075 }

076 return @found;

077 }

078

 079 #############################

080 sub owread {

081 #############################

082 my ($entry) = @_;

083

 084 my @found = ();

085

 086 my $result = OW::get($entry)

087 or LOGDIE

088 "Failed to read $entry";

089

 090 DEBUG

091 "owread result='$result'";

092

 093 for my $entry (

094 split /,/, $result) {

095 $entry =~ s#/$##;

096 push @found, $entry;

097 }

098

 099 return @found;

100 }

101

 102 1;

Listing 1: OWTemp.pm

Figure 8: The graph drawn by RRDTool visualizes the

temperature curve for the inside and outside sensors.

PROGRAMMINGPerl: Temperature Sensors

61ISSUE 65 APRIL 2006W W W. L I N U X- M A G A Z I N E . C O M

Bot::BasicBot, and define the said()
method for the class; the method is
called when someone says something in
the chatroom. said() receives the mes-
sage as a parameter, and can then check
if the bot wants to respond, and either
return a message or undef. If you have
version 0.65 of Bot::BasicBot, you will
see a message when you launch that
says Use of ->new() is deprecated,
please use spawn(), but you can just
ignore the warning.

Installation
The owfs software distribution, which
uses a USB interface to talk on the one-
wire bus, is available at [2]. When this

article went to print, only the latest
version from the owfs project’s CVS
repository worked; enter cvs -d:pserver:
anonymous @cvs.sourceforge.net:/cvs-
root/owfs co owfs to get the version.
There is also a tarball at [5] that has
been shown to work with the scripts in
this issue.

You need the latest version of SWIG
([7]) to install owfs; the developer ver-
sion 1.3.27 worked fine. If you will be
installing the owfs command line tool to
access the one-wire bus via the com-
mand line (Figure 2), along with the Perl
interface, you also require the FUSE user
filesystem from [4], unless your distribu-
tion happens to provide it (test by enter-

ing ls -l /usr/local/bin/fusermount).
Then enter the following:

./bootstrap

./configure
make

to start the build. Then run make install
to install the command line tool. The fol-
lowing steps install the OW Perl module:

cd module/swig/perl5
perl Makefile.PL
make install

from the owfs distribution. A cronjob
which runs every five minutes fills the

01 #!/usr/bin/perl -w

02 #############################

03 # rrdmon -Temp sensor monitor

04 # Mike Schilli, 2005

05 # (m@perlmeister.com)

06 #############################

07 use strict;

08 use Getopt::Std;

09 use Log::Log4perl qw(:easy);

10 use Sysadm::Install qw(:all);

11 use RRDTool::OO;

12 use OWTemp;

13

 14 Log::Log4perl->easy_init(

15 $DEBUG);

16

 17 my $RRDDB =

18 "/tmp/temperature.rrd";

19 my $GRAPH =

20 "/tmp/temperature.png";

21

 22 my %sensors = (

23 "10.E0E3C7000800" =>

24 "Outside",

25 "10.B2A7C7000800" =>

26 "Inside",

27);

28

 29 getopts("g", \my %o);

30

 31 # Constructor

32 my $rrd =

33 RRDTool::OO->new(

34 file => $RRDDB);

35

 36 # Create a round-robin DB

37 $rrd->create(

38 step => 300,

39 data_source => {

40 name => "Outside",

41 type => "GAUGE"

42 },

43 data_source => {

44 name => "Inside",

45 type => "GAUGE"

46 },

47 archive => { rows => 5000 }

48)

49 unless -f $RRDDB;

50

 51 if ($o{g}) {

52

 53 # Draw graph in a PNG image

54 $rrd->graph(

55 start => time() - 24 *

56 3600 * 3,

57 image => $GRAPH,

58 vertical_label =>

59 'Temperatures',

60 draw => {

61 color => '00FF00',

62 type => "line",

63 dsname => 'Outside',

64 legend => 'Outside',

65 },

66 draw => {

67 type => "line",

68 color => 'FF0000',

69 dsname => 'Inside',

70 legend => 'Inside',

71 },

72 width => 300,

73 height => 75,

74 lower_limit => 0,

75);

76

 77 } else {

78

 79 my $ow = OWTemp->new();

80

 81 my %values = ();

82

 83 for my $station (

84 $ow->temperatures())

85 {

86 my ($dev, $temp) =

87 @$station;

88 $values{ $sensors{$dev} } =

89 $temp;

90 }

91

 92 $rrd->update(

93 time => time(),

94 values => \%values

95);

96 }

Listing 2: rrdmon

Perl: Temperature SensorsPROGRAMMING

62 ISSUE 65 APRIL 2006 W W W. L I N U X- M A G A Z I N E . C O M

RRD archive: */5 * * * * cd /path;
./rrdmon; ./rrdmon -g;.

You need both rrdmon and the OW-
Temp.pm Perl module in your /path. The
files created by rrdmon are stored in
/tmp, but you can change the path vari-
ables in rrdmon (lines 18/ 20). As each
sensor has a unique ID, you need to
modify lines 23 and 25 to reflect your
environment. Use the approach shown
in Figure 2 to discover the sensor IDs.

The remaining modules, Sysadm::
Install and Log::Log4perl, are available
from CPAN. RRDTool::OO requires either
a working rrdtool installation, or it will
try to download a working installation.

For the bot, you need Bot::Ba-
sicBot, which automatically
installs the POE distribution.

Be Secure
When you plug the USB don-
gle into your computer, the
hot-plug mechanism creates
a USB device, something like
root -rw-r--r-- /proc/ bus/ usb/
003/ 008. As owfs needs write
access to the dongle, root
privileges are required to
read the temperature values.
An executable hot-plug script
in /etc/hotplug/usb/ds2940

gives you a workaround to avoid run-
ning the scripts as root:

#!/bin/bash
/etc/hotplug/usb/ds2940
chmod a+rwx "${DEVICE}"

To allow the hotplugger to run the script
when the dongle is inserted, append the
following code to /etc/hotplug/usb.user-
map:

/etc/hotplug/usb.usermap
DS2940 one-wire USB device
ds2940 0x0003 0x4fa 0x2490 U
0x0000 0x0000 0x00 0x00 U

0x00 0x00 0x00 0x00U
0x00000000

This allows all our scripts to run with
non-privileged user IDs, which keeps the
host security people from jumping on
your back. ■

01 #!/usr/bin/perl -w

02 #############################

03 # tempbot-Temp sensor IRC bot

04 # Mike Schilli, 2005

05 # (m@perlmeister.com)

06 #############################

07 use strict;

08 use Bot::BasicBot;

09

 10 package TempBot;

11 use base qw(Bot::BasicBot);

12 use Log::Log4perl qw(:easy);

13 use RRDTool::OO;

14

 15 #############################

16 sub said {

17 #############################

18 my ($self, $mesg) = @_;

19

 20 return

21 unless $mesg->{body} eq

22 "temp";

23

 24 my $rrd =

25 RRDTool::OO->new(file =>

26 "/tmp/temperature.rrd");

27

 28 my $dsnames =

29 $rrd->meta_data(

30 "dsnames");

31

 32 $rrd->fetch_start(

33 start => time() - 5 * 60,

34 end => time()

35);

36

 37 my $string;

38

 39 while (my ($time, @values) =

40 $rrd->fetch_next()) {

41

 42 for (my $i=0;

43 $i < @$dsnames; $i++){

44 $string .=

45 sprintf "%10s: %.1f\n",

46 $dsnames->[$i],

47 $values[$i];

48 }

49 return $string;

50 }

51 }

52

 53 $^W = undef;

54

 55 TempBot->new(

56 server =>

57 'irc.freenode.net',

58 channels => ['#sftemp'],

59 nick => 'tempbot',

60)->run();

Listing 3: tempbot

[1] Listings for this article:
http:// www. linux-magazine. com/
Magazine/ Downloads/ 65/ Perl

[2] The one-wire file system project:
http:// owfs. sourceforge. net

[3] DS18S20 temperature sensor:
http:// www. maxim-ic. com/ quick_
view2. cfm/ qv_pk/ 2815

[4] The Fuse project website:
http:// fuse. sourceforge. net

[5] CVS snapshot for owfs:
http:// perlmeister. com/ devel/ owfs-2.
2p0RC-cvssnap. tgz

[6] DS9490R one-wire USB dongle data-
sheet: http:// pdfserv. maxim-ic. com/
en/ ds/ DS9490-DS9490R. pdf

[7] SWIG developer version :
http:// prdownloads. sourceforge. net/
swig/ swig-1. 3. 27. tar. gz

[8] One-wire bus:
http:// en. wikipedia. org/ wiki/ 1-Wire

INFO

Figure 9: The IRC bot responds with the current temper-

atures.

PROGRAMMINGPerl: Temperature Sensors

63ISSUE 65 APRIL 2006W W W. L I N U X- M A G A Z I N E . C O M

