
56

Graphviz is a useful toolbox to
have on hand if you need an au-
tomated approach to generating

graphs (see the “Terminology” box).
Computer users fumble through generat-
ing graphs, starting with E/ R diagrams
for visualizing database schemas to hier-
archicial tree structures that represent an
organization’s shareholdings or a chain
of command. Normally, the information
is located in square boxes that must be
positioned carefully, without overlap-
ping with other boxes, before drawing
anyconnecting arrows. This is the kind
of challenge in which Graphviz excels –
users simply specify the relationships
between the elements, and the tool au-
tomagically outputs an attractive draw-
ing. Don’t look for a neat graphical edi-
tor in which you can specify the rela-
tions. Instead, Graphviz reads a text-
based description of the graph in a spe-
cial markup language. (LaTeX uses a

similar approach, although the two sys-
tems have nothing in common apart
from this.)

Graphviz has been included with all
popular Linux distributions for years
now. Installing the package is simple –
just point and click in your favorite
package manager. You can also down-
load the latest source code version from
the Graphiz homepage [1] and follow
standard procedure to build and install:

configure; make; make install

Whichever way you choose to go, you
should have a collection of tools on your
disk when you are done.

Don’t Forget to Write
Before you can put the Graphviz tools
through their paces, you need a descrip-
tion of the graph you want to create. To
create a description, you need to write a

text file in the dot language, which is
simple to learn. For example, Listing 1
implements a simple, directed graph.

The description starts by defining a di-
rected graph called G with three nodes:
father, son, and daughter. In contrast to
many other programming languages,
there is no need to explicitly declare the
nodes. You can just go ahead and use
them. The arrows specify which nodes
the edges connect. Loops are permitted.
The following would point to itself:

father -> father

An optional semicolon terminates each
line. As you can see from the parenthe-
ses, the syntax is modelled on that of the
C programming language. C is also the

B
u

lly
soft, foto

lia

Graph visualization with Graphviz

DRAWING SET

Using drawing tools to manually create graphs and diagrams can be

a slow and convoluted process. The Graphviz toolbox offers a faster

way. Based on a short text with the information for the graph,

Graphviz quickly generates a neat drawing. BY TIM SCHÜRMANN

GraphvizKNOW-HOW

56 ISSUE 77 APRIL 2007 W W W. L I N U X- M A G A Z I N E . C O M

01 digraph G {

02 /* The father has a son and
a daughter: */

03 father -> son;

04 father -> daughter;

05 }

Listing 1: example1.dot

57

source for comment tagging, which uses
/* to open and */ to close a comment.

On the Dot
To convert this description to a drawing,
you now need to run the dot tool. Con-
fusingly, the tool uses the same name as
the markup language. The following
command creates a PNG file (Figure 1):

dot -Tpng example1.dotU
 -o example1.png

In addition to this, dot supports Post-
Script (-Tps parameter), JPG, Gif, Fig,
SVG, and a number of other more or less
exotic formats. Direct PDF output is not
supported right now, but you can use
the Ghostscript ps2pdf tool as a work-
around. Don’t forget to specify the -o

along with a filename. If you do, the tool
will send the output directly to the con-
sole. The same thing applies to the -T
parameter; without the parameter, dot
will simply output the text description
of the drawing.

Red Alert
If the description does not contain in-
structions to the contrary, dot will create
oval nodes labeled with their names.
Let’s change this in our example by add-
ing the father’s first and second names,
using filled, red rectangles. The dot lan-
guage has a number of attributes that
will help us implement the changes. To
modify a specific attribute, such as the
color or the label, you just assign a dif-
ferent value to the attribute in question:

color = red
label ="John Smith"

You need to comma-separate the attri-
butes and append them to the node
name in square brackets. In the father’s
case, the syntax is as follows:

father [shape = box,U
 style = filled, U
 color = red, label U
 ="John Smith"];

The next thing is to insert this line some-
where between the curly braces in the
graph. The recommended approach is to
define the nodes’ appearance first, be-
fore going on to define the edges.

If this has worked for the nodes, you
can rightly expect it to work for the
edges. Just like nodes, users can color
edges, change their line styles, or add la-
bels. Again, all you need to do is to ap-
pend pairs of values in square brackets
to the edge in question, as in the follow-
ing example:

father -> daughter U
 [style = bold, label = U
 "first-born", color = blue];

The family tree is shown in Listing 2,
and the results after running dot against
the description are shown in Figure 2.

One for All
Changing the shape of all the nodes in a
large graph might sound like a lot of
work. The dot markup language uses

two keywords – node and edge – to facil-
itate the task. Changing the attributes of
the keywords applies the changes to all
elements in the graph. For example, the
following:

digraph G {
 node [shape = box];
 ...
}

assigns a square frame to the nodes –
unless the individual node contains attri-
bute instructions to the contrary. The
edge instruction does the same thing for
the edges.

Divisible
Subgraphs are also very useful. You can
use them to group nodes that belong to-
gether. Listing 3 gives you an example.

In this case, we have introduced a sub-
graph that contains the daughter and the
son. To tell dot to highlight the cluster in
the output, you need to start the name
with the cluster prefix. The other attri-
butes belong to the subgraph; in this
case, they define the color and the label.
Figure 3 shows the results.

KNOW-HOWGraphviz

57ISSUE 77 APRIL 2007W W W. L I N U X- M A G A Z I N E . C O M

A graph uses lines to connect multiple
boxes. The boxes are referred to as
nodes, and the lines as edges. An exam-
ple of a graph might be a map of a free-
way, where cities are nodes and the
roads themselves are edges. A graph in
which the links are represented by ar-
rows is referred to as a directed graph
(or digraph). Without the arrows, this
would be an undirected graph. You
could think of directed edges as one-
way streets.

There is a mathematically sound – and
thus, slightly cryptic – way of expressing
this. A (directed) graph:

G = (V,E)

comprises a set of nodes, and a
set of edges (E), where the
letter contains pairs of
(directed) nodes of the form:

e = (x,y)

Terminology

Figure 1: The description in Listing 1 creates

this directed graph.

father

son daughter

Figure 2: Just a couple of Graphviz instruc-

tions are all it takes to color the father node

red.

John Smith

Petra

First born

Patrick

01 digraph G {

02 father [shape = box, style =
filled, color = red, label
="John Smith"];

03 daughter [label ="Petra"];

04 son [label = "Patrick"];

05 father -> son;

06 father -> daughter [style =
bold, label = "first-born",
color = blue];

07 }

Listing 2: example2.dot

Classes
Thus far, nodes have just been assigned
simple labels. However, the UML class
diagram I referred to previously needs
nodes with multiple subdivisions.

To do this task in dot, you will first
need to switch the frame to a special
mode – record:

node [shape = record]

From this point on in the code, dot will
do something special with the label for
this node, adding vertical lines to subdi-
vide the node into multiple sections:

employee [label = U
 "{Employee|+ salary : U
 int\l+ name : string\l | U
 + work() : void\l}"]

The \l tags left justify the text, and the
curly braces insert vertical bars. This

gives us a more or less perfect represen-
tation of the UML class; all we need now
are labels on the edges. In UML, the car-
dinalities can be positioned at both ends
of an edge. To do this, you can use the
headlabel and taillabel attributes:

edge [headlabel = "1", U
 taillabel = "1..*"]

For an example of a small UML diagram
description, see Listing 4. Figure 4 shows
the resulting diagram.

Slots
A record can do more than this, however.
Users can use the divisions in the node
to control the links to multiple subse-
quent nodes. Listing 5 and Figure 5
show you how this works. The angled

brackets mark special points, known as
slots, from which the arrows in the dia-
gram emanate or terminate.

Undirected
Directed graphs are dot’s speciality; if
you need undirected graphs, you could
use another tool from the collection –
neato. Again, the tool expects dot de-
scriptions; however, it only supports the
graph keyword, rather than digraph. Di-
rected edges are converted to undirected
edges using --. Listing 6 shows an exam-
ple. Figures 6a and 6b show the dia-
grams created by dot and neato.

The Tools dot and neato use different
drawing algorithms. While dot organizes
nodes hierarchically, neato replaces
edges with virtual springs and uses sim-
ulated gravity to calculate the correct
distance between the nodes, thus creat-
ing a symmetric layout. The twopi and
circo tools are also worthy of attention.

01 digraph G {

02 node [shape = record] /*
vertical lines in the label
are drawn as lines */

03 edge [arrowhead = "none",
headlabel = "1", taillabel =
"1..*"]

04 /* curly braces mean: drawn
a horizontal line, and not a
vertical bar (rotate the box
through 90 degrees) */

05 employee [label =
"{Employee|+ salary : int\l+
name : string\l | + work() :
void\l}"]

06 corporation [label =
"{Corporation| | + paysalary()
: void\l}"] employee ->
corporation

07 }

Listing 4: UML Diagram

The Graphviz programs expect a short
description of the graph, which they
then automagically convert into a draw-
ing. This leaves users with few options
for influencing the kind of results they
get. If you appreciate the benefits a de-
scription language can give you, but
would prefer to have more granular con-
trol over the position and shape of the
individual elements in the graph, you
might prefer one of Graphviz’s competi-
tors. Asymptote [2] and GLE [3], in par-
ticular, are worth noting. Both can be ac-
cessed from within LaTeX. XML-based
languages, such as the popular SVG [4],
follow a similar approach; however,
there is very little in this line of software
available right now.

Alternatives

Figure 5: The slots in Listing 5 support the

kind of nodes you need to visualize, like hash

functions or arrays.

 Father

 Son Daughter

GraphvizKNOW-HOW

58 ISSUE 77 APRIL 2007 W W W. L I N U X- M A G A Z I N E . C O M

01 digraph G {

02 subgraph cluster_children {

03 style = filled;

04 color = lightgrey;

05 label = "Children";

06

07 daughter [label ="Petra"];

08 son [label = "Patrick"];

09 }

10

11 father [label = "John
Smith"];

12

13 father -> daughter;

14 father -> son;

15 }

Listing 3: example3.dot

Figure 3: The description in Listing 3 high-

lights the subgraph with the children.

children

PetraPatrick

John

Figure 4: A small UML diagram defined in

Listing 4.

Employee

+ salary : int
+ name : string

+ work() : void

company

+ paySalary() : void

1
1..*

They arrange nodes in a circular pattern;
for more details on the algorithms that
do this, refer to the Graphviz documen-
tation [5].

Pipe Filters
With a little help from pipes and filters,
the dot command-line tool can also be
used for scripting or integrated with
other Linux programs. To do so, you first
need to prepare the graph description in
a text buffer, then pass it into dot, and fi-
nally pick up the results. A shell script
might do it this way, for example:

echo "digraph G {father->son; U
 father->daughter;}" | U
 dot -Tpng >example7.png

In this example, the output from dots is
simply redirected to a file, but of course,
this could be another (shell) script for
additional processing.

The graphical editor, dotty, works in
the same way. It is not particularly con-
venient, but it does let you click and
point to create graphs.

If these features do not give you the
options you need, you can always create
a C program to access the functions in
the Graphviz library. The library has
convenient functions for parsing text-
based files in dot format and dropping
the results into a data structure designed
explicitly for this purpose.

You can also manipulate graphs in
memory and output the results. The pro-
gram shown in Listing 7 gives you a
brief example. It parses a text file with
dot commands, draws a graph with a lit-
tle help from the dot algorithm, and out-
puts the results. In fact, dot itself is built
in a similar fashion.

There are some more sample programs
in the dot.demo directory that comes
with the source code package. The
Graphviz homepage has a comprehen-
sive API reference. If you use the API for
your own development work, note that

the libraries are licensed under the Com-
mon Public License.

Conclusions
Once you have come to terms with the
graph description language, dot, you will
appreciate the tools in the Graphviz
package. It is hard to find a faster way to
create graphs. Thanks to pipes and fil-
ters, dot and company are easy to inte-
grate with other sequences and shell
scripts. Plus, if the package is not to your
liking, you can check out the “Alterna-
tives” box for similar tools. ■

01 graph G {

02 server [label = "Main server
Leo"];

03

04 server -- client_smith

05 server -- client_miller;

06 server -- client_turner;

07 server -- client_meier;

08 }

Listing 6: Undirected Graph

[1] Graphviz homepage:
http:// www. graphviz. org

[2] Asymptote homepage:
http:// asymptote. sourceforge. net

[3] GLE homepage:
http:// www. gle-graphics. org

[4] SVG format specifications:
http:// www. w3. org/ Graphics/ SVG/

[5] Information on the algorithms used
by Graphviz: http:// www. graphviz. org/
Documentation. php

INFO

01 #include <gvc.h>

02

03 int main()

04 {

05 GVC_t *context;

06 graph_t *graph;

07 FILE *fp;

08

09 context = gvContext();

10 fp = fopen("example.dot",
"r");

11 graph = agread(fp); /* Parse
graph */

12 gvLayout(context, graph,
"dot"); /*Create layout with
dot algorithm */

13 gvRender(context, graph,
"png", stdout); /* Output
graph in PNG format */

14 /*Clean up */

15 gvFreeLayout(context,
graph);

16 agclose(graph);

17 gvFreeContext(context);

18 }

Listing 7: Graphviz C API

KNOW-HOWGraphviz

59ISSUE 77 APRIL 2007W W W. L I N U X- M A G A Z I N E . C O M

01 digraph G

02 {

03 node [shape = record];

04 /* The "Ports" are shown in
square brackets */

05 father [label ="<left> |
<center> Father | <right>"];

06 son [label ="<left> |
<center> Son | <right>"];

07 daughter [label ="<left> |
<center> Daughter | <right>"];

08

09 "father":center -> "son":
left;

10 "father":center ->
"daughter":right;

11 }

Listing 5: Complex Links

Figure 6a: The undirected graph from Listing 6, rendered by dot.

Main server Leo

client_smith client_miller client_turner client_meier

Figure 6b: The undirected graph from Listing

6, rendered by neato.

Main server Leo

client_smith

client_miller

client_turner

client_meier

