
special properties such as shutting down
the server), at the database level (which
contains one or more tables), at the table
level (which contains one or more col-
umns), and within a table against spe-
cific columns. Unfortunately, MySQL
does not currently support row-level
(e.g., per record) permissions; however,
this can be added at the application
level. Of course, if you bypass the appli-
cation-level security through an SQL in-
jection, your row-level protection won’t
help. Because most applications don’t
provide much guidance on exactly which
permissions are needed, how do you go
about locking them down?

Calculating SQL Permissions
The good news is that Dan Cornell of the
Denim Group has done some work in
this area. His excellent presentation is
available as a video [1], and he also pro-
vides slides [2]. The first step in calculat-
ing SQL permissions is to enable logging
of SQL queries (mysql_start_logging.sh),
which basically boils down to setting
two global variables:

mysql ‑e "SET GLOBAL log_output = U

 'TABLE'" ‑‑user=root mysql

mysql ‑e "SET GLOBAL general_log = U

 'ON'" ‑‑user=root mysql

This setup will log queries to the mysql.
general_log table. You’ll then need to ex-
ecute every possible operation within
your application: adding users; removing
users; modifying users; creating, updat-
ing, and deleting records through any
operations, such as creating items or
modifying them; running internal appli-
cation updates; and so on.

W
hen it comes to attacks
against organizations, data-
bases are generally the soft
underbelly – easy to attack

once you’re past the front line – and they
usually hold all the really interesting
data. But, databases are hidden behind
firewalls, and only a complete fool

would allow direct re-
mote access to

them, right?
Right. But
for a data-
base to be
useful, you
generally
have to
make it
available to
users so they
can interact

with it.

This setup is more often than not ac-
complished through web-based applica-
tions. So, as long as the web-based ap-
plications are secure, your database
should be safe. Of course, this is rarely
the case: The CVE database contains the
phrase “allows remote attackers to exe-
cute arbitrary SQL commands” in 3,773
entries, and the phrase “SQL injection”
occurs 5,717 times. And, the CVE data-
base is by no means a complete list of all
the SQL-related vulnerabilities in com-
mon software applications.

Why is SQL injection such a problem?
The sad reality is that most applications,
especially web-based applications, use a
single account for everything, including
applications such as WordPress, Media
Wiki, and Bugzilla. Not only do they all
use a single user by default for all data-
base operations, I’m not actually sure
that you can split up the database usage
into different users without rewriting sig-
nificant portions of the applications. Ad-
ditionally, most of these applications
don’t offer much guidance regarding

exactly which permissions are actu-
ally required.

MySQL Permissions
Accounts in MySQL can have

a variety of privileges as-
signed to them. These per-
missions can be applied at
the global level (e.g.,
against all databases or

Protecting your database

 Database
 Intrusion Detection
Your database can be one of the most vulnerable elements in

your organization. We share some tips for detecting and

preventing attacks. By Kurt Seifried

Kurt Seifried is an Information Security Consultant specializing in Linux
and networks since 1996. He often wonders how it is that technology
works on a large scale but often fails on a small scale.

 Kurt Seifried

Features
Security Lessons: Database Security

October 2012	 Issue 143	 linux-magazine.com | Linuxpromagazine.com	48

A good way to do this is to install a re-
cent version of the application and then
run the upgrade process, logging every-
thing that happens. The problem is that if
you fail to run an operation (and thus
don’t generate a log entry for the queries
it needs to run), you might break your
application later when you lock it down.

Now comes the tricky part: Turning
these logs into a set of permissions is far
from trivial. You can do a lot of the
heavy lifting using the sqlpermcalc pro-
gram (and associated tools) [3]. Basi-
cally, you feed the exported mysql.gen-
eral_log data into sqlpermcalc.py, but it
only handles SELECT, INSERT, DELETE, and
UPDATE.

You will need to handle permissions
such as FILE manually; this allows im-
porting and exporting of data from files
and is generally not needed. Other per-
missions relating to the structure of data-
bases, such as CREATE, ALTER, INDEX, DROP,
and so on, will typically only be used
during installation or upgrades of the
system. Finally, the administration per-
missions like GRANT and SUPER are almost
never needed. These are typically given
only to administrative users.

Building Applications
Properly
I thought it might be useful here to in-
clude some general information on how
applications should be built. Ideally, you
should examine the various roles needed
by your applications components (e.g., a
component that creates a user account, a
component that is used to modify the
user account, and the component that is
used by administrators to manage users
all need different access levels).

If you can split them up – for example,
only giving the create user component
the ability to INSERT values, giving the
user account modification component
the ability to SELECT and UPDATE, and
granting the administrative component
privileges, such as SELECT, INSERT, and
UPDATE – you will significantly reduce the
effect of any SQL injection vulnerability
in the user-facing components. Your ad-
ministrative components are locked
down, right?

Faking Row-Level
Permissions
Another consideration is adding row-
level permissions into MySQL. The first

question to ask is what kind of permis-
sions are needed? Will each row have
one user specified that can read or mod-
ify it, or do you need to support multiple
users and groups for each row with
varying levels of permissions? If one
user owns a record, you can simply add
a column to the table in question and
list the user that is allowed access to
that row.

If you need more complicated permis-
sions, your best bet is probably to create
a table of users, a table of groups, or
both, along with their associated permis-
sions, and then use a link table to con-
nect rows in the table that you want to
protect with the row in the permissions
table that defines what is allowed. You
will then need to instruct your applica-
tion to support these permissions. An-
other option would be to add a database
abstraction layer, which mediates access
(so you pass the query, the username or
group, and possibly an access token/​
password).

Building Tripwires
One classic way to detect attacks against
a database is to build tripwires. One sim-
ple method of doing so in MySQL is to
add columns that are not needed and re-
strict access to them. You would then en-
able the general query log and watch it
for failed queries (the overhead here
would be an issue). Thus, if an attacker
issues a query such as SELECT * FROM, it
will be detected. You also would have to
ensure that your application only re-
quests the columns it needs and does
not use SELECT * FROM itself.

Another option that can work well in
conjunction with an IDS such as Snort is
to insert fake records into the database.
Using special values that will never be
encountered in reality (i.e., “kwiegdb-
vikwebvkjwb”) and then configuring
your Snort IDS to watch for those values
is an effective way to raise the alarm if
the attacker starts sucking down the en-
tire database.

Additionally, if you flood your data-
base with fake records, the attacker will
need more time to download the data,
which will give you more time to react.
This setup can also affect performance
(making your database 10 times larger
will probably not be overly popular with
the admin who has to tune the data-
base). However, if you architect your ta-

bles correctly, for example, by splitting
passwords into a separate table, you can
easily add a lot of fake records without
too much of an effect. Just make sure it
is indexed.

A third option is to log database activ-
ity and build a statistical model of what
is “normal” for your application. Assum-
ing you have multiple front-end servers
using the database back end, creating
separate user accounts for each applica-
tion server will let you more closely
track what each server is doing. A five
percent increase in overall queries is
probably nothing much to worry about.
However, if you have 10 servers splitting
the load, a 50 percent increase load on
one server is definitely cause for con-
cern.

sqlmap
Finally, here is the pointy end of the
stick. Traditional penetration testing in-
volved a lot of hand-crafted tools and
manual work. That approach is, of
course, quite inefficient and tedious at
times, so people have created software
suites and frameworks for testing the se-
curity of applications and systems. For
web-based SQL injection, the tool to use
is sqlmap [4].

sqlmap supports virtually every data-
base (MySQL, PostgreSQL, Oracle, MS-
SQL, etc.). It also supports a wide vari-
ety of attacks, including time-based SQL
injection (longer queries mean you’re
probably doing something you are not
supposed to) and error-based SQL injec-
tion. Additionally, it can inject attacks
into cookies, requests, HTTP-referer, and
User-agent, just to name a few features.
These tools, along with careful permis-
sions setup, will help you detect data-
base attacks and protect your organiza-
tion. nnn

[1]	� Dan Cornell video on SQL permis-
sions: https://​www.​youtube.​com/​
watch?​v=jzRShMGZe3U&​hd=1

[2]	� Dan Cornell blog entry on SQL per-
missions: http://​blog.​denimgroup.​
com/​denim_group/​2012/​04/​source‑b
oston‑2012‑follow‑up‑what‑permis‑
sions‑does‑your‑database‑user‑re‑
ally‑need.​html

[3]	� sqlpermcalc: https://​github.​com/​
denimgroup/​sqlpermcalc/

[4]	� sqlmap: http://​sqlmap.​org/

 Info

Features
Security Lessons: Database Security

49linux-magazine.com | Linuxpromagazine.com	 Issue 143	 October 2012

https://www.youtube.com/watch?v=jzRShMGZe3U&hd=1
https://www.youtube.com/watch?v=jzRShMGZe3U&hd=1
http://blog.denimgroup.com/denim_group/2012/04/source-boston-2012-follow-up-what-permissions-does-your-database-user-really-need.html
http://blog.denimgroup.com/denim_group/2012/04/source-boston-2012-follow-up-what-permissions-does-your-database-user-really-need.html
http://blog.denimgroup.com/denim_group/2012/04/source-boston-2012-follow-up-what-permissions-does-your-database-user-really-need.html
http://blog.denimgroup.com/denim_group/2012/04/source-boston-2012-follow-up-what-permissions-does-your-database-user-really-need.html
http://blog.denimgroup.com/denim_group/2012/04/source-boston-2012-follow-up-what-permissions-does-your-database-user-really-need.html
https://github.com/denimgroup/sqlpermcalc/
https://github.com/denimgroup/sqlpermcalc/
http://sqlmap.org/

