
The Linux kernel mailing list
comprises the core of Linux
development activities.
Traffic volumes are immense,
often reaching 10,000
messages in a week, and
keeping up to date with the
entire scope of development
is a virtually impossible task
for one person. One of the
few brave souls to take on
this task is Zack Brown.

 Zack Brown

Zack’s Kernel News
Chronicler Zack

Brown reports on

the latest news,

views, dilemmas,

and developments

within the Linux

kernel community.

By Zack Brown

Defensive Patch Tracking
for All
Luis R. Rodriguez pointed out that the “Signed-
off-by” tag has become popular with other free
software projects.

Originally, the “Signed-off-by” tag for patch
submissions was created in response to the
SCO lawsuit, which targeted (among others)
Linus Torvalds and asked for proof that Linux
did not incorporate code derived from Unix
System V, which SCO owned. At the time,
given the hierarchical nature of Linux develop-
ment, patches would sift upward through
mailing lists, testers and cohorts, official main-
tainers, lieutenants, and others before finally
arriving in Linus’s inbox to be applied to the
kernel tree. Not much more than good will en-
sured that the code submitted to Linus was ac-
tually owned by the person who originally
submitted it.

Ultimately, Linus has an algorithmic approach
to development. Kernel development is itself a
running process on a very strange system. The
copyright challenge represented out-of-memory
errors and data throughput bottlenecks and per-
haps came close to crashing the system entirely.
In other words, it required a god-awful amount
of work to refute SCO’s claims.

The Signed-off-by tag is Linus’s algorithmic
answer to that whole issue. Actually the
Signed-off-by tag is only the most visible part
of what has become an official “Developer’s
Certificate of Origin” (DCO) process. The DCO
is kept in Documentation/ SubmittingPatches
and has its own version number (currently at
version 1.1). According to the DCO-1.1, when-
ever a patch enters the development system
(i.e., someone submits it), everyone who re-
views it adds the “Signed-off-by” text identify-
ing themselves as one of the people in the re-
view chain and certifying that they have not
added any code that would violate the terms of
the GPL.

Thanks to the DCO-1.1, in the future, any
piece of code identified as a possible copyright
violation in a court case will have a relatively
easy path to identify the specific people in-
volved in submitting that code, so they can
give an accounting of how they came to sub-
mit that code. Thus, the task of clarifying the
kernel’s origins can be efficiently distributed to
the relevant contributors, instead of being
heaped on Linus alone. (Other people volun-

teered to take on much of that burden, but
that’s a different story.)

Luis, in his recent email, pointed out that
the Signed-off-by tag has become popular
with other open source projects, but, he said
not all of them had a clear understanding of
the full specification of the DCO-1.1. Linux
used it, so they loved it, but without neces-
sarily grokking how to eke out its best value.

Luis suggested that the DCO-1.1 should be
extracted from Documentation/ Submitting-
Patches and given its own separate standalone
project, so other free software projects would
have an easy way to find and refer to it.

A few kernel folks considered his sugges-
tion. Alan Cox thought it would be best to
leave the document in the kernel tree proper,
but that Luis could cut-and-paste it else-
where, if that would be useful to anyone. He
pointed out, “There’s a reason that lawyers
copy documents into other documents rather
than doing late dynamic binding – you want
to be sure that what you reference is the
exact text that is valid for this case.”

Jiri Slaby agreed that copying the text to
other open source projects would be better
than creating a distinct project just for it, or
even linking to it in the kernel sources. He
suggested that other projects might want to
modify the terms of the DCO, and so they’d
want to have their own copy of the explana-
tory text and change it according to their
needs. Alan agreed with this. Essentially, any
free software project might want to “fork” the
DCO, and that should be fine.

At this point, W. Trevor King said that he
was having trouble identifying the license
under which the DCO-1.1 had been released.
He linked to Linus’s very interesting 2004 re-
quest for discussion [1], and he pointed out
that Linus had himself created the initial
patches that added the DCO into the Docu-
mentation/ SubmittingPatches file. Trevor also
linked to the Open Source Development Labs’
(OSDL) press release announcing the DCO-1.1
[2] and specifically the part where OSDL said,
“© 2005 Open Source Development Labs, Inc.
The Developer’s Certificate of Origin 1.1 is li-
censed under a Creative Commons Attribu-
tion-ShareAlike 2.5 License. If you modify you
must use a name or title distinguishable from
‘Developer’s Certificate of Origin’ or ‘DCO’ or
any confusingly similar name.”

MAY 2013 Issue 150 lInux-MAgAzIne.coM | lInuxproMAgAzIne.coM 92

Community Notebook
Kernel News

Trevor asked, “What license is the DCO distributed under and who holds copyright?”
There was no answer to this on the linux-kernel mailing list, but in a later post, Trevor
announced that he’d created a new Git repository preserving the commit history of the
DCO [3]. Because he derived this new repository from the Linux kernel and the Git
project, both of which were licensed under the GPL version 2, he released his own re-
pository under the GPL version 2 as well. Trevor said, “If you’re using a GPLv2 exact
project, you can merge the ‘signed-off-by’ branch into your project directly.”

But, he added, “Because many projects that are not GPLv2 may still want to use
the DCO/ s-o-b approach, I’ve included an example CONTRIBUTING file (and CON-
TRIBUTING.md for GitHub) that are licensed under the very permissive Creative
Commons CC0 1.0 Universal. Merge the ‘contributing’ or ‘contributing-github’
branch into your project and edit as you see fit.”

Luis was ecstatic about this and immediately began incorporating Trevor’s work
into his own free software projects.

Project Inclusion Criteria
There was a bit of a kvmtool kerfluffle recently when David Rientjes asked if kvmtool
would ever be migrated from linux-next into the kernel proper.

KVM (Kernel Virtual Machine) is a kernel subsystem that allows users to create and
run virtualized systems on a running Linux system. It’s great! And kvmtool is the us-
erspace tool that actually boots the KVM guest images so users can use them.

In response to David’s question, Stephen Rothwell said that Linus Torvalds didn’t
want to include kvmtool in the kernel, so Stephen was going to remove it from the
-next tree; he asked Ingo Molnár to remove it from his tip/ auto-latest tree as well.

However, Ingo said he planned to keep kvmtool in his tree because he used it for test-
ing and hadn’t encountered any problems with it and because Pekka Enberg was plan-
ning to submit a new version to Linus in the near future, which might be accepted.

H. Peter Anvin replied, “So why don’t we let Linus either accept and reject it for
the 3.9 merge, but if rejected, we drop it from linux-next until such time as Linus’ ob-
jections have been addressed?”

Stephen didn’t think there was much chance that Pekka’s patch would be accepted,
and he pointed out that he didn’t want Ingo to remove kvmtool from his own tree,
only from that part of the tree that resided in linux-next. He quoted Linus as saying,
“I have yet to see a compelling argument for merging it. It’s tons of code, it
doesn’t match the original ‘small simple’ model, and I think it would be better
off as a separate project.”

Ingo replied that the -next version of his tree was identical to his working
tree, and he didn’t want them to diverge, although he did say he’d change
it if Linus really insisted. However, he added that kvmtool was improving
nicely, had several dozen contributors, and was very useful to kernel de-
velopment. It aided KVM development and was also used to test experi-
mental kernel features without having to reboot the entire system.

Revealing his frustration with the debate, Ingo continued, “What
harm has tools/ kvm/ done to you?” And, “*Please* don’t try to harm
useful code just for the heck of it.” He concluded, “Please stop this
silliness, IMO it’s not constructive at all.”

Linus joined the discussion at this point, drawing a hard line. He
said that he hadn’t seen any good reasons why kvmtool shouldn’t just
remain a standalone project. He pointed out that Ingo’s claims that kvm-
tool was useful to kernel development were true enough, but that this wasn’t
a good reason to merge something into the kernel.

He also pointed out that tying kvmtool to the kernel only made it more diffi-
cult for users to access. Instead of just going and getting kvmtool, users had

lInux-MAgAzIne.coM | lInuxproMAgAzIne.coM Issue 150 MAY 2013 93

Community Notebook
Kernel News

to go and get the entire kernel source
tree, with kvmtool inside.

Linus concluded, “let me state it very
very clearly: I will not be merging kvm-
tool. It’s not about ‘useful code’. It’s not
about the project keeping to improve.
Both of those would seem to be *better*
outside the kernel, where there isn’t that
artificial and actually harmful tie-in. In
other words, I don’t see *any* advantage
to merging kvmtool. I think merging it
would be an active mistake, and would
just tie two projects together that just
shouldn’t be tied together.”

Pekka replied to this, saying, “you are
absolutely correct that living in the kernel
tree is suboptimal for the casual user.
However, it’s a trade-off to make tools/
kvm *development* easier especially
when you need to touch both kernel and
userspace code.” He pointed out that “we
support KVM on ARMv8 even before the
in-kernel code has hit mainline. People
implemented vhost drivers in lock-step.
Most of the contributors are also kernel
developers. And we in fact have a clean
codebase that’s accessible to anyone who
knows the kernel coding style.”

Linus replied that these things didn’t
qualify as justifications for merging the
code into the kernel versus keeping kvm-
tool as a standalone project. The conve-
nience of the developers was simply not
a reason to merge code, he said. He
added, “The only thing the lock-step
does is to generate the kind of depen-
dency that I ABSOLUTELY DETEST,
where one version of kvmtools goes
along with one version of the kernel.
That’s a huge disadvantage (and we’ve
actually seen signs of that in the perf
tool too, where old versions of the tools
have been broken, because the people
working on them have been way too
much in lock-step with the kernel it is
used on).”

Linus asked what was standing in the
way of kvmtool just being a standalone
project. Pekka replied that the kvmtool
code was too tightly dependent on the
kernel to be taken out. If it were ex-
tracted into a separate project, it
wouldn’t even build correctly. Pekka also
said that in terms of their development
environment, the mailing list and the
kernel development workflow all repre-
sented infrastructure that they would
have to create afresh if kvmtool became
a separate project.

But, Linus replied, “You do realize that
none of your arguments touched the
‘why should Linus merge the tree’ ques-
tion at all? Everything you said was
about how it’s more convenient for you
and Ingo, not at all about why it should
be better for anybody else.”

He added, “You haven’t bothered to
even try making it an external project, so
it doesn’t compile that way. You’re the
only one working on it, so being conve-
nient for you is the primary issue. Argu-
ments like that actively make me not
want to merge it, because they are only
arguments for you continuing to work
the way you have, not arguments for
why the project would make sense to
merge into the main kernel repository.”

Linus also said that he didn’t mind if
Pekka and Ingo continued working the
way they had been. They didn’t need to
disrupt their workflow or development
process at all, but he just wouldn’t
merge the code. “There’s no reason why
kvmtool couldn’t be external the way all
the other virtualization projects are,”
Linus said.

They went back and forth on the same
issue for a bit. Pekka’s argument was es-
sentially that the developers could work
faster and better if the code were in the
kernel, and Linus’s argument was that
code only goes inside the official tree if it
belongs there for technical reasons, rather
than the convenience of developers.

At one point, Theodore Ts’o joined in
the discussion, saying: “I completely
agree with Linus here; in fact, the main
reason why it’s important to keep user-
space tools outside of the kernel is that it
keeps us careful about interface design.
For example, I consider it a *feature*
that when we extend the file system data
structures for ext4, they have to be made
in the two places; once in the kernel,
and once in e2fsprogs’s version of ext2_
fs.h. Yes, it might be more convenient if
we pushed all of e2fsprogs into the ker-
nel, so I wouldn’t have to edit ext2_fs.h
in two places, but when I make changes
to ext2_fs.h, I want to be really careful,
lest I not break backwards compatibility,
and to think very carefully about for-
ward compatibility issues. If there are
constantly huge numbers of interface
changes in the kernel/ userspace inter-
face, then it increases the chances that
mistakes will be made. It’s better that
those mistakes be caught early, and if

changes need to be made in two places,
it increases the chances that these mis-
takes will be noticed sooner rather than
later.”

David Woodhouse agreed, adding: “If
you want to use pieces of the kernel in-
frastructure, then just *take* them.
There are loads of projects which use the
kernel config tools, for example. There’s
no need to be *in* the kernel repo. And
for code-reuse it’s even easy enough to
automatically extract parts of kernel
code into a separate repository. See the
ecos-jffs2 and linux-headers trees, for ex-
ample, which automatically tracked
Linus’ tree with a certain transformation
to make them sane for just pulling into
the relevant target repositories.”

The debate continued and got more
and more heated. Ingo and Pekka con-
tinued to insist that there were real,
measurable benefits to including kvm-
tool in the main tree, while Linus contin-
ued to insist that the benefits they identi-
fied were all centered around the conve-
nience of the developers and didn’t meet
his requirement of having a technical
justification.

Ultimately, Ingo said in the final post
to the thread of discussion: “So, just to
bring this to a conclusion, obviously
Linus is insisting on it, so I’ve removed
tools/ kvm from tip:auto-latest, by going
back from the daily merges (where
tip:master was == tip:next) to the older
complete reintegration merges to linux-
next every couple of weeks. This way
tools/ kvm will still be available in
tip:master (merged after full integra-
tions) and there are still the usual daily
(or more frequent) delta-merges of
tip:master as new bits get ready – with
the occasional riskier total reintegration
done for linux-next.”

Ingo continued, “It’s obviously not op-
timal, but that’s the best I could come up
with given the constraints.” nnn

[1] DCO request for discussion:
http:// article. gmane. org/ gmane.
 linux. kernel/ 205867

[2] OSDL DCO press release:
http:// web. archive. org/ web/
 20070306195036/ http:// osdlab. org/
 newsroom/ press_releases/ 2004/
 2004_05_24_dco. html

[3] DCO Git repository: https:// github.
 com/ wking/ signed‑off‑by

 Info

MAY 2013 Issue 150 lInux-MAgAzIne.coM | lInuxproMAgAzIne.coM 94

Community Notebook
Kernel News

