
nore the bad behavior (if you’re lucky),
or respond with some combination
thereof. If things get really ugly (e.g., the
server is starting to tip over), you can
begin taking desperate measures, which
are probably better than having the
server die (well, usually).

Dropping Connections
One way to deal with overload is simply
to start dropping connections early; the
sooner you can stop dealing with an at-
tacker, the sooner you can deal with real
clients. Unfortunately, for some services
like SSH, if you’re using password-based
authentication, you need to give people
some time to type in the password. An
alternative is to drop connections ran-
domly, the idea being that by dropping
lots of connections, clients will get an-
other chance to connect. Unfortunately,
if it’s a large DoS, the attacker’s connec-
tions will outnumber legitimate ones
and, you’ll be back where you started.
So, just dropping connections probably

won’t work too well.

Progressive
Timeouts
A common and effec-
tive way to prevent
brute-force attacks is to
implement a progressive

timeout – if you get the
password wrong, you have to

wait a second; if you get it wrong
again, you have to wait two seconds,

then four seconds, and so on. This re-
duces the number of attempts an at-
tacker can make. To make this really ef-
fective, you can apply the timeout not
just to the current session but to all con-

A
s you may have noticed, spam,
web-based attacks, and denial-
of-service (DoS) attacks have
gotten rather bad over the past

few years. Currently, spam makes up
about 90% of email messages; in other
words, for every legitimate email you
get, your server has to handle around
nine spam messages. For online retailers,
the stakes can be much higher. DoS at-
tacks at the height of the shopping sea-

son can have a hugely negative im-
pact. So, what can you do to

deal with these problems?

Reward,
Ignore, or
Punish?
When it comes to
dealing with be-
havior and chang-
ing it, you have
some options:
You can reward
good behavior,
punish bad
behavior, ig-

Separating the wheat from the chaff

Winnowing
Attackers impose a high price on your limited resources. We

look at some ways to separate the good from the bad.

 By Kurt Seifried

46

Features
Security Lessons: Self-Defense

March 2012	 Issue 136	 linux-magazine.com | Linuxpromagazine.com	

046-047_kurt.indd 46 1/17/12 12:05:50 PM

nections from that IP address or net-
work. The downside of this method is
that people stuck behind a NAT box (like
everyone on public WiFi networks or
many corporate environments) will be
affected by other users who fail to log in
(intentionally or otherwise).

Reputation-Based
Systems
This strategy lends itself more to email-
based systems because of the (usually)
centralized nature of email servers (legit-
imate ones). Reputation services like
SORBS and Spamhaus [1] simply allow
your mail servers to ignore badly be-
haved clients (known spammers, resi-
dential ISPs, etc.). The upside is that
these services are cheap and easy to use,
both computationally and operationally.
The bad news is that these approaches
tend to be both overreaching (innocent
systems get included) and underreaching
(spammers create new systems quickly,
and it takes time for them to get on the
lists). Also, you need server software
that supports reputation-based lookups,
which is mostly supported in email serv-
ers and not much else.

Greylisting
Greylisting [2] is simple and effective for
protocols that support error conditions
that basically say, “come back later,” like
email. This won’t work as well for inter-
active protocols like SSH and the various
WWW protocols – who wants to wait
more then a second for a web page to
load? The reason greylisting works is
that it makes clients behave properly,
and it increases the amount of resources
required to connect and send an email.
So, apart from email, this solution is
largely out.

Hashcash
What if you could really make attackers
pay, computationally or otherwise, with
either minimal or no effect on legitimate
clients? Hashcash [3] is one such at-
tempt. Many computational problems
have solutions that are easy to verify but
hard to create. A simplistic example
would be to generate two prime num-
bers, multiple them, and send the result
to the remote end, which then has to
factor the number and send the result
back. Another class of solutions is to
pick a secret value, hash it, and send the

hash to the client (the added benefit is
that the work needed on the server is
very minimal).

Hashcash uses a pretty clever and sim-
ple technique to create problems that are
easy for the server to create and verify
but computationally difficult for the cli-
ent to solve. Instead of requiring a com-
plete match of the hash, Hashcash gen-
erates a SHA-1 hash that it sends to the
client. The client then has to find a par-
tial collision. For example, the server
hashes the word “secret” and sends “fc-
683cd9ed1990ca2ea10b84e5e6f-
ba048c24929” to the client. The client
then has to find something that partially
matches and sends the result back (e.g.,
“000000000000000000000000000000000
0024929”). The advantage here is that
you can easily dial up the work load
needed to solve the problem by requiring
a more complete match (each bit re-
quired would be in theory twice as much
work). Even better, a variety of lan-
guages (C, Java, Python, C#, .NET,
JavaScript, even a shell script) have
working implementations of Hashcash.

If Hashcash is so great, why does no
one use it? For one thing, you would
need to retrofit a ton of software to sup-
port it, and that never happens in a
hurry. Hashcash also has significant
downsides. It uses SHA-1, which, as you
learned in my column on password stor-
age [4], actually makes it easier for at-
tackers to use brute force because SHA-1
is so optimized for speed.

A better choice would be something
like bcrypt, which includes a work func-
tion to increase the time needed. Unfor-
tunately, these approaches have the ef-
fect of punishing legitimate clients heav-
ily; for example, if Hashcash were to be-
come widely used for email, anyone run-
ning an email list server would have to
buy a ton of server hardware just to cal-
culate Hashcash values so they could
send email. However, if Hashcash were
combined with reputation-based systems
and whitelisting of known good clients
(e.g., the aforementioned mailing list
server), it would solve a lot of problems
but would be somewhat complex to im-
plement (okay, that’s a bit of an under-
statement).

A Bouncer at the Door
If you can’t make people pay to get in,
maybe you can put a bouncer at the

door and only let the nice people in. In
web terms, you’ve probably run into
CAPTCHAs [5] – those mangled words
that you have to type in – but CAPT-
CHAs have several problems. The first is
that many have been broken by auto-
mated systems, and the second is that,
by the time someone gets to the CAP
TCHA, they have already established a
connection. Not to mention the annoy-
ance for users: I’m averaging two to
three attempts now to get them right.

An alternative method is to require cli-
ents to behave like clients and not like
automated bots. In web terms, one trick
to accomplish this is to place JavaScript
or Flash content in a web page that then
makes a request to the server. If the cli-
ent requests a web page and then fails to
make the request before asking for more
pages, you have either a bot or someone
who doesn’t have JavaScript or Flash in-
stalled (and you can ask them nicely to
enable it for the site). Although this is
not an ideal solution, because you will
be locking out some- security-conscious
users, it can go a long way to preventing
bots from hammering your site.

Conclusion
There are no easy ways to prevent DoS
attacks, especially if the bad guys have
access to 10,000-node botnets. However,
over time, the number of infected hosts
will only get worse (e.g., all those Win-
dows XP machines that never get up-
dates, embedded systems, etc.). One in-
teresting potential side effect of things
like Hashcash is that by requiring in-
fected clients to do a lot of computation
to send spam or launch attacks, people
might actually notice their machine is
slow enough to warrant fixing it. You
can only hope. nnn

[1]	� DNS blacklists:
http://​en.​wikipedia.​org/​wiki/​
Comparison_of_DNS_blacklists

[2]	� Greylisting: http://​greylisting.​org/

[3]	� Hashcash: http://​hashcash.​org/

[4]	� “Security Blanket” by Kurt Seifried,
Linux Magazine, November 2011, pg.
46, http://​www.​linuxpromagazine.​
com/​Issues/​2011/​132/​Security‑Lesso
ns‑Password‑Storage

[5]	� reCAPTCHA:
http://​www.​google.​com/​recaptcha

 Info

Features
Security Lessons: Self-Defense

47linux-magazine.com | Linuxpromagazine.com	 Issue 136	 March 2012

046-047_kurt.indd 47 1/17/12 12:05:50 PM

