
O
pen source software never
ceases to amaze me. Of all the
things I have ever encountered
(with the possible exception of

Legos) nothing can be so easily modi-
fied, changed, molded, extended, and
otherwise improved. With many pro-
grams explicitly supporting external plu-
gins and extensions, this process has be-
come even easier. Some examples in-
clude Firefox, TYPO3, WordPress, and,
of course, the Linux kernel.

So, why are plugins (extensions, mod-
ules, etc.) such a big deal? Plugins allow
people to try out new ideas and concepts
for software without having to get agree-
ment or even cooperation from the main
project (you can just run with it). Some-
times, for a variety of technical, legal,
marketing, or political reasons, software
projects cannot or will not provide cer-
tain features (e.g., Firefox and AdBlock
Plus).

Additionally, for projects such as
TYPO3 and WordPress that provide con-
tent management systems (CMS) and
blog publishing capabilities (basically a
specialized subset of CMS), the source
code would balloon to a ridiculous size
if every single capability that people
wanted was included (WordPress has
11,231 plugins as of September 2010;
Firefox currently appears to have more
than 13,000).

Finally, in the (relatively rare) case, an
author or company feels they can only
provide the software in a closed source
form; in the case of the Linux kernel, for
example, this allows you to have wire-

less drivers that otherwise would not be
available.

Why Worry?
To quote Stan Lee: “With great power
there must also come – great responsibil-
ity!” Plugins almost always run within
the security context and privilege level
of the application to which they are,
well, plugged in. This means that a Fire-
fox plugin (assuming you are executing
Firefox under your own account) will
have access to all your files.

The plugin could also interact with
your login session, run background pro-
cesses, and do pretty much anything your
account can do, such as edit your crontab
or .profile to run arbitrary scripts and
code, even when you aren’t logged in.
This actually happened back in 2008; a
Firefox plugin called Basic Example Pl-
ugin for Mozilla spread Trojan.PWS.
ChromeInject.A to steal user passwords
and account details [1]. Even when they
aren’t intentionally malicious, the ugly
truth is that code quality of plugins often
lags behind that of the main project.

Large projects such as Firefox, TYPO3,
and WordPress attract a lot of attention
and support; in some cases, they have
dedicated secu-
rity teams that
continuously
audit code
and work to
handle security
issues quickly.
Large security ven-
dors also have a

vested interest in finding security flaws
in these programs, because their custom-
ers are likely to be using them. Fortu-
nately, most security vendors work to
ensure that security issues are handled
in a manner that causes minimal pain to
end users. But plugin
projects rarely have
such resources;
often, a single
author re-
leases the
code publicly.

TYPO3
TYPO3 sup-
ports exten-
sions ranging
from calendar
plugins to
email

Features
Security Lessons: Plugin Vulnerabilities

DECEmbEr 2010 IssuE 121 lInux-magazInE.Com | lInuxpromagazInE.Com 48

Plugins provide a lot of functionality but, depending on their quality, they can provide

unwanted security issues as well. We show you how to protect yourself from plugins.

By Kurt Seifried

More code, more problems

Reduce Your Risk

Kurt Seifried is an Information Security Consultant specializing in Linux
and networks since 1996. He often wonders how it is that technology
works on a large scale but often fails on a small scale.

 KurT Seifried

048-049_kurt.indd 48 07.10.2010 15:17:13 Uhr

workflow, a rich text editor, and various
forum software packages, to name a few.
The core of TYPO3 consists of more than
6,000 files of which 1,200 or so are PHP
files. In 2009 (because 2010 isn’t over
yet, I’ll use last year), there were 21 se-
curity advisories with 113 issues. Of
these issues, only 16 were in the actual
TYPO3 core code [2]; the other 97 were
in TYPO3 extensions.

This number isn’t as bad as it sounds.
According to the TYPO3 Extension Re-
pository page, the 10th most popular pl-
ugin has been downloaded 317 times for
the current version, which means the
majority of TYPO3 plugins have been
downloaded fewer than 300 times (of
course, a plugin may be downloaded and
installed at more than one site, but I sus-
pect these numbers are representative).
In fact, the TYPO3 security team has la-
beled a large number of advisories with
the text “This Collective Security Bulle-
tin (CSB) is a listing of vulnerable exten-
sions with neither significant download
numbers, nor other special importance
amongst the TYPO3 Community” [3].

According to Common Vulnerabilities
and Exposures (CVE) numbers for the
past few years, the TYPO3 core had 20
vulnerabilities and various extensions
had 235 – a ratio roughly equal to the
detailed numbers from 2009. The same
story applies for Firefox, WordPress, and
virtually every other software that sup-
ports plugins or extensions.

The Linux Kernel
Another great example of the use of

plugins (or, in this case, modules)
is the Linux kernel. On most sys-
tems running a stock vendor ker-
nel, you will have more than
1,000 modules (e.g., CentOS 5.4
has 1,251). The total size of
these modules is 96MB, mean-
ing your kernel would go from
2MB to 98MB (i.e., your /boot
partition would need to be a
gigabyte or two). To protect
themselves from binary-only
modules, Linux kernel de-
velopers have implemented
a system that marks the ker-
nel as “tainted” if a module

is loaded that does not have
an open source license. Be-

cause the Linux kernel uses mod-
ules for most non-core functions, it

is relatively quick and easy to upgrade the
system without rebooting.

Short-Term Solutions
Several short-term and long-term solu-
tions are available for managing vulnera-
bilities. The most obvious short-term so-
lution is to reduce the attack surface.
Firefox is a great example of this, be-
cause several applications quietly install
plugins (Java, Skype, etc.) that you
might not be aware of. Well-behaved ex-
tensions like NoScript or AdBlock Plus
(Figure 1) will give you an “Uninstall”
option; less well-behaved extensions like
the Java Console (Figure 2) won’t have
an Uninstall option but typically have a
Disable option.

Extensions that have neither a Disable
nor Uninstall option should generally be
avoided. But at least in Linux, if you
have an unruly extension, you can man-

ually remove it by simply going into
your home directory, entering the
~/.mozilla/firefox/ directory, entering
your personal default directory (it will
have a random name that helps prevent
attackers from dropping files in there),
and deleting the directories for the ex-
tensions you want to get rid of [4]. The
only problem will be figuring out which
directory is which extension; they use a
GUID (really long, hopefully unique
string) as the directory name, such as

ec8030f7‑c20a‑464f‑9b0e‑13a3a9e97384

so you need to use the search engine of
your choice to find out which directories
are which plugins. The same issues gen-
erally apply to web applications. Most
plugins and extensions will usually be-
have, but, if not, you might have to go in
manually and start deleting files.

Because you can’t always remove plu-
gins that could present a threat, you can
do some other things to make sure you
are getting the best possible plugins. The
first thing to consider is freshness: When
was the last release and how often are
the releases? Stale plugins are usually
more dangerous; security fixes take more

time, if they are ever updated. Also,
check the project’s website. Whether a
plugin or extension has a decent website
with contact information can indicate
whether you want to use it (hint: no
contact information is a bad sign).

Long-Term Solutions
One of the best long-term solutions (po-
tentially) is a WordPress-related project.
WordPress announced that they would
be separating plugins into two camps:
the “core” plugins and the rest. Core plu-
gins would be the popular plugins that
everyone uses and, thus, provide the
highest exposure to attackers. These core
plugins will (one hopes) be audited and
integrated with WordPress, resulting in
higher code quality and easier installa-
tion and management. Unfortunately,
not much seems to have happened with
this project. (I suspect this is a classic
case of “good enough” stifling an effort
to improve things.)

Conclusion
Plugins and extensions are here to stay.
Unfortunately, the code quality of many
ranges from so-so to downright terrible.
My advice is not to use any plugins that
don’t receive regular updates or don’t
behave nicely. On the other hand, cer-
tain plugins like NoScript, FlashBlock,
and AdBlock Plus can significantly im-
prove the security of your system (con-
sidering the number of Adobe Flash
zero-day attacks in 2010) [5]. nnn

[1] Malicious Firefox plugin: http:// blog.
 mozilla. com/ security/ 2008/ 12/ 08/
 malicious‑firefox‑plugin/

[2] TYPO3 security: http:// typo3. org/
 teams/ security/ security‑bulletins/

[3] TYPO3 security bulletin:
http:// typo3. org/ teams/ security/
 security‑bulletins/ typo3‑sa‑2010‑018/

[4] Uninstalling add-ons:
http:// kb. mozillazine. org/
 Uninstalling_extensions

[5] Zero-day vulnerability: http:// en.
 wikipedia. org/ wiki/ Zero‑day_attack

 infO

Figure 1: A well-behaved plugin (AdBlock

Plus).

Figure 2: A less well behaved plugin (Java

Console).

Features
Security Lessons: Plugin Vulnerabilities

lInux-magazInE.Com | lInuxpromagazInE.Com IssuE 121 DECEmbEr 2010 49

048-049_kurt.indd 49 07.10.2010 15:17:16 Uhr

