
With the latest major Python re-

lease, creator Guido van Ros-

sum saw the opportunity to

tidy up his famous scripting language.

What is different about Python 3.0? In

this article, I offer some highlights for

Python programmers who are thinking

about making the switch to 3.x.

The first important point is that ver-

sion 3.0, which is also known as Python

3000 or Py3k, broke with an old tradi-

tion in that it is not downwardly compat-

ible. According to von Rossum, “There is

no requirement that Python 2.6 code will

run unmodified on Python 3.0.”

Python 2.6’s main purpose is to take

the pain out of switching versions. Many

of Python 3.0’s features were backported

to Python 2.6. (A similar Python 2.7 ver-

sion will accompany the recent Python

3.1 release.) In addition to these transi-

tional 2.x versions, the 2to3 command-

line tool supports programmers migrat-

ing code from Python 2.x to Python 3.x.

Quirks
Python has some quirks that have

bugged van Rossum since

the beginning of the

millennium. With

Python 3, he de-

cided to sacri-

fice downward

compatibility to remove

these obstacles. The most

blatant break with Python 2 is the

syntactic change to print, which has

mutated from a statement to a func-

tion; thus, parameters, now called

keywords, are called in paren-

theses. This change is in

line with Tim Peters’ The Zen of Python:

“Explicit is better than implicit.” [1]. The

new generic print syntax is print(*args,

sep=' ', end='\n', file=sys.stdout),

where args are the arguments, sep is the

separator between the arguments, end is

the end-of-line character, and file is the

output medium.

Table 1 lists the syntax changes to the

print function, including their default

values. The advantage of the new ver-

sion is not apparent until you take a

closer look; the new print function now

supports overloading. Listing 1 shows a

print function that writes to standard

output and to a logfile at the same time.

To allow this to happen, the function in-

strumentalizes the built-in __built-

ins__.print function.

Doing no more than

absolutely necessary

is a virtue in many

programming lan-

guages. Python 3

puts far more empha-

sis on lazy evalua-

tion. Lists, dictionar-

ies, or Python’s

functional build-

ing blocks

no longer generate complete lists; they

add just enough to support the evalua-

tion of the output. Lazy evaluation thus

saves memory and time.

The Python interpreter achieves this

effect by returning only one iterable con-

text that generates values on request.

(This was what distinguished range and

xrange in Python 2.) In Python 3, range

acts like xrange, thus making the xrange

function redundant.

The same applies to the functional

building blocks map, filter, and zip.

These functions have been replaced by

their equivalents from the itertools li-

brary. For dictionaries, the resulting, iter-

able contexts are known as views. How-

ever, if the programmer needs the full

expanded list, simple encapsulation of

the iterable context by means of a list

constructor, as shown in the following

example, can help: list(range(11)) pro-

duces [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

Division
That 1/2 == 0 shocks Python newcom-

ers. This unusual feature is attributable

to Python’s C roots. Python 3 gets rid of

this strange effect by differentiating be-

tween true division and floor division.

What do Python 2.x programmers need to know about Python 3? BY RAINER GRIMM

What’s new in Python 3

The NexT SNake

Python 3RevieWs

42 ISSUE 107 OCTOBER 2009

Examples Python 2.* Python 3.*

Generic form print “x = “, 5 print (“x = “, 5)

Create newline print print()

Suppress newline print x, print(x, end=” “)

Suppress newline without blanks print(1,2,3,4,5, sep=””)

Redirect output print >>sys.stderr, print(“fatal error”,

 “fatal error” file=sys.stderr)

Table 1: Print Syntax

E
ric IsselÃ

©
e, 12

3
R

F

Whereas in true division 1/2 == 0.5,

floor division works like division in Py-

thon 2. The notation for floor division

uses two slashes: 1//2 == 0.

In Python 2, programmers had to de-

clare strings explicitly as Unicode

strings. Python 3 strings are now implic-

itly Unicode. Python 3.0 only distin-

guishes between text and data. Text (str)

relates to strings and is the same as Py-

thon 2 Unicode strings. Data (bytes) are

8-bit strings and the same as Python 2

strings. Python 3 developers need to de-

clare data: b"8_bit_string". Table 2 gives

an overview of the difference between

Python 2 and 3.

The str.encode() and bytes.decode()

functions are available to convert be-

tween data types. Programmers need

this conversion in Python 3.0 when

working with both data types; implicit

type conversion no longer takes place.

Programmers simply have to decide.

syntactic Changes
Function annotations in Python 3 now

allow programmers to bind metadata to

a function. Decorators can then be

added to the function in a second step;

decorators automatically generate data

from the metadata or perform type

checking at run time.

The equivalent functions, sumOrig

and sumMeta (Figure 1), show function

declarations with and without metadata.

The second function includes metadata

for the signature and return value. This

metadata can be referenced with the __

annotations__ function attribute.

Backports
Python 2.6’s whole purpose in life is to

make the move to version 3 as easy as

possible, so many Python 3.0 features

were backported to Python 2.6.

Resource management using with is

an important new feature in Python 2.6.

A resource (file, socket, mutex, …) is au-

tomatically bound when entering and re-

leased when exiting the with block. This

idiom will remind C++ programmers of

“Resource Acquisition Is Initialization”

(RAII), wherein a resource is bound to

an object. The with statement acts like

try … finally from the user’s point of

view, in that both the try block and the

finally block are always executed. All of

this happens without explicit exception

handling.

How does all of this work? In a with

block, you can use any object provided

by the context management protocol –

that is, which has internal __enter()__

and __exit()__ methods. When entering

the with block, the __enter()__ method

is automatically called, as is __exit()__

when exiting the block.

The file object comes complete with

these methods (Listing 2). Resource

management is easy to code, however. A

classic application would be to protect a

code block against simultaneous access.

Listing 3 has placeholders for the code

block. The locked class objects prevent

competitive access in the with block by

using myLock to synchronize the block.

If this is too much work for you, you

can use the contextmanager decorator

from the new contextlib [2] library to

benefit from its resource management

functionality. Many other applications

are listed in the Python Enhancement

Proposal (PEP) 0343 [3].

Abstractions
The biggest syntactic extension to Py-

thon 2.6 is probably the introduction of

abstract base classes. Whether an object

could be used in a context previously de-

pended on the object’s properties and

not on its formal interface specification.

This idiom is known as duck typing,

from a James Whitcomb Riley poem

01 try:

02 import cPickle as pickle

03 except ImportError:

04 import pickle

Listing 4: Import Idiom
01 with open('/etc/passwd', 'r') as

file:

02 for line in file:

03 print line,

04 # file is closed

Listing 2: With Block with
File

01 with locked(myLock):

02 # Code here executes with myLock

held. The lock is

03 # guaranteed to be released when

the block is left

04 class locked:

05 def __init__(self, lock):

06 self.lock = lock

07 def __enter__(self):

08 self.lock.acquire()

09 def __exit__(self, type, value,

tb):

10 self.lock.release()

Listing 3: Protecting a
Code Block

RevieWsPython 3

43ISSUE 107OCTOBER 2009

Figure 2: Failure to instantiate.Figure 1: Function annotations bind metadata to a function.

 Python 2.* Python 3.0

8-bit string “string” b“string”

Unicode string u“string” “string”

Table 2: Strings in
Python 2 and 3

01 import sys

02 def print(*args,sep='',end="\

n",file=sys.stdout):

03 __builtins__.print(*args)

04 __builtins__.

print(*args,file=open("log.

file","a"))

Listing 1: Overloading the
Print Function

(“When I see a bird that walks like a

duck and swims like a duck and quacks

like a duck, I call that bird a duck.”).

If a class contains an abstract method,

it becomes an abstract base class and

cannot be instantiated. Derivative

classes can only be created if they imple-

ment these abstract methods. Abstract

base classes in Python act in a similar

way to abstract base classes in C++, in

that abstract methods are specifically al-

lowed to contain an implementation.

Besides abstract methods, Python also

uses abstract properties. Python uses ab-

stract base classes in the numbers [4]

and collections [5] modules. That still

leaves the question: When does a class

become an abstract class? The class

needs the ABCMeta metaclass. The

methods can then be declared as @ab-

stractmethod, and the properties as @

abstactproperty using the corresponding

decorators. In addition to this, the use of

abstract base classes means the entry of

static typing into a language that uses

dynamic typing. In the example in Fig-

ure 2, the Cygnus class cannot be instan-

tiated because it does not implement the

abstract quack() method.

Multiple Processors
Python’s response to multi-processor ar-

chitectures is the new multiprocessing

[6] library. This module imitates the

well-known Python threading module,

but instead of a thread, it creates a pro-

cess, and it does this independently of

the platform. The multiprocessing mod-

ule became neces-

sary because CPy-

thon, the standard

Python implemen-

tation, could only

run one thread in

its interpreter.

This behavior is

dictated by the

Global Interpreter Lock (GIL) [7].

Class decorators [8] round out the list

in Python; from now on, you can deco-

rate classes as well as functions.

Python 3.0 also has a new I/ O library

[9]. The string data type gained a new

format() [10] method for improved

string formatting. At the same time, the

previous format operator, %, is depre-

cated in Python 3.1.

Clean-Up Work
Wherever changes occur, it is also neces-

sary to ditch some ballast. This affects li-

braries that have been removed, that

have been repackaged, or that coexist in

C and Python implementations. The

popular Python idiom (Listing 4) of im-

porting the fast C implementation of a

module first and then falling back on the

Python implementation if this fails is no

longer necessary. Python does this auto-

matically. More details are available on

changes to the standard library [11].

All exceptions must derive from Base-

Exception. This implies, in particular,

that string exceptions are no longer sup-

ported. The exception object now has a

new __traceback__ attribute, which con-

tains the traceback of the exception. The

approach to both calling and fielding ex-

ceptions with arguments has changed.

Programmers can now throw exceptions

with arguments using raise Base Excep-

tion(args) and field them with except Ba-

seException as variable (Figure 3).

Python 3 also includes other changes

to make life easier for programmers. For

example, in cooperative super calls, it is

no longer necessary to name the class

instance and the class name. Old-style

classes, which were deprecated at some

previous time, no longer exist in Python

3.0; this removes the need to derive from

object to use Python’s newer features.

Direct evaluation of input via the

input() command is no longer sup-

Figure 5: The recommended migration path

for porting Python 2.6 code to version 3.Figure 4: Direct evaluation of input via the input command is no longer supported in Python 3.

Python 3RevieWs

44 ISSUE 107 OCTOBER 2009

Figure 7: The 2to3 code generator has a large number of options.Figure 3: The new traceback attribute for exceptions.

Figure 6: The Python 3 option in v.2.6 points to issues with the port.

ported, as the input is available as an

input string. This approach closes a criti-

cal security hole (Figure 4). It was only

logical to rename the raw_input() func-

tion input() and to remove raw_input.

Of course, any description of the new

features can’t hope to be exclusive. If

you want to know more, check out the

reference document by von Rossum,

“What’s New In Python 3.0” [12].

Porting to Python 3.0
A clear migration path is available for

porting Python 2 code to Python 3 (Fig-

ure 5), but you will need to test the code

and fix any bugs at each step of the way.

The four lines of code in Listing 5 will

serve as an example for migrating Py-

thon 2 to Python 3.0. All four lines de-

fined functional components of Python.

The first function calculates the sum of

three numbers, 2, 3, and 4, by applying

these arguments to the Lambda func-

tion. The reduce built-in successively re-

duces the list of all numbers from 1 to 10

by multiplying the results of the last

multiplication with the next number in

the sequence. The last two functions fil-

ter words, starting with filtering upper-

case letters out of a string.

The code works on Python 2.6, and

you only need to perform Steps 3 and 4

for the port. The source code for this ex-

ample is stored in a file called port.py.

Calling the Python 2.6 interpreter with

the -3 option (Figure 6) shows incompat-

ibilities with version 3: Both the apply

function and the reduce function are no

longer built-ins in Python 3.0. The code

is easily fixed (Listing 6), and the depre-

cation warnings then stop.

The code generator 2to3 is really use-

ful if you need to correct your Python 2

code; the generator’s final step is to au-

tomatically generate code for versions

3.0 and 3.1. The tool offers several op-

tions for this (Figure 7). The direct ap-

proach is to overwrite the original file:

2to3 port.py -w. The result is the ported

source code for Python 3.0 (Listing 7).

When to Make the Move
Python 3.0 originally placed more em-

phasis on functionality, and this meant

that it was about 10 percent slower than

Python 2. The required optimization oc-

curred in Python 3.1 [13]. This optimiza-

tion relates to special handling of small

integers. On top of this, Python 3.1’s I/ O

library is implemented in C, which

makes it between 2 and 20 times faster.

Decoding of the UTF-8, UTF-16, and

Latin-1 character sets is now twice to

four times as fast.

If you are still waiting for third-party

libraries to be ported, there is no point

porting your application code to Python

3. von Rossum also recommends [14]

not writing any code that will run on

both Python 2.6 and Python 3 without

modifications. It is preferable to main-

tain the source code as Python 2.6 code

and then use automated tools to port to

Python 3.0 or 3.1. Christopher Neuge-

bauer has the final word in his video talk

on Python 3000: “Learn 2.6, but keep 3k

in mind.” n

Rainer Grimm has been a software

developer since 1999 at Science +

Computing AG in Tübingen, Ger-

many. In particular, he holds training

sessions for the in-house product SC

Venus.T
H

E
 A

U
T

H
O

R

RevieWsPython 3

45ISSUE 107OCTOBER 2009

[1] Peters, Tim. The Zen of Python:

http:// www. python. org/ dev/ peps/

 pep-0020

[2] contextlib library: http:// docs.

 python. org/ 3. 0/ library/ contextlib.

 html# module-contextlib

[3] PEP 0343: http:// www. python. org/

 dev/ peps/ pep-0343

[4] numbers library: http:// docs. python.

 org// 3. 0/ library/ numbers. html#

 module-numbers

[5] collections library:

http:// docs. python. org/ 3. 0/ library/

 collections. html# module-collection

[6] multiprocessing module:

http:// docs. python. org/ 3. 0/ library/

 multiprocessing. html#

 module-multiprocessing

[7] GIL: http:// docs. python. org/ c-api/ init.

 html# thread-state-and-the-global-int

erpreter-lock

[8] Class decorators: http:// www.

 python. org/ dev/ peps/ pep-3129

[9] io library: http:// docs. python. org/ 3. 0/

 library/ io. html# module-io

[10] Format string method:

http:// docs. python. org/ 3. 0/

 whatsnew/ 2. 6. html# pep-3101

[11] Changes to libraries:

http:// docs. python. org/ 3. 0/

 whatsnew/ 3. 0. html# library-changes

[12] What’s New in v.3.0: http:// docs.

 python. org/ 3. 0/ whatsnew/ 3. 0. html

[13] Optimizations in v.3.1:

http:// docs. python. org/ dev/ py3k/

 whatsnew/ 3. 1. html# optimizations

[14] Porting to v.3.0: http:// docs. python.

 org/ 3. 0/ whatsnew/ 3. 0. html#

 miscellaneous-other-changes

INFO

01 print("sum of the integers: " , (lambda a,b,c: a+b+c)(*(2,3,4)))

02 print("factorial of 10 :", reduce(lambda x,y: x*y, list(range(1,11))))

03 print("titles in text: ", [word for word in "This is a long Test".split() if

word.istitle()])

04 print("titles in text: ", [word for word in "This is a long Test".split() if

word.istitle()])

Listing 7: Code Ported to Python 3.0

01 print "sum of the integers: " , (lambda a,b,c: a+b+c)(*(2,3,4))

02 import functools

03 print "factorial of 10 :", functools.reduce(lambda x,y: x*y, range(1,11))

04 print "titles in text: ", filter(lambda word: word.istitle(),"This is a long

Test".split())

05 print "titles in text: ", [word for word in "This is a long Test".split() if

word.istitle()]

Listing 6: Removing the Deprecation Warning

01 print "sum of the integers: " , apply(lambda a,b,c: a+b+c , (2,3,4))

02 print "factorial of 10 :", reduce(lambda x,y: x*y, range(1,11))

03 print "titles in text: ", filter(lambda word: word.istitle(),"This is a long

Test".split())

04 print "titles in text: ", [word for word in "This is a long Test".split() if

word.istitle()]

Listing 5: Code for Port

