
Nginx (pronounced Engine-ex) is

an Open Source HTTP server

and reverse proxy. The Nginx

web server is known for its high perfor-

mance, stability, rich feature set, simple

configuration, and low resource con-

sumption. Nginx, which was written by

Igor Sysoev, is used with many high-

profile sites, including WordPress.com,

Hulu, and LinuxQuestions.org. In addi-

tion to its HTTP-related functionality,

nginx can also serve as an IMAP/ POP3

proxy.

Nginx’s basic HTTP support includes

the ability to serve static files, acceler-

ated reverse proxying with optional

caching, simple load balancing and fault

tolerance, remote FastCGI with caching/

acceleration, and SSL/ TLS server name

indication (SNI). Like Apache’s httpd,

nginx has many features that are imple-

mented in a modular fashion and only

need to be enabled if you plan to use

them. Unlike the process-based httpd,

though, nginx is asynchronous. The

main advantage of the asynchronous ap-

proach is scalability. In a process-based

server, each simultaneous connection re-

quires a thread, which can lead to signif-

icant overhead, especially when under

high load. An asynchronous server, on

the other hand, is event-driven and han-

dles requests in a single (or at least very

few) threads.

Installation
If you have a simple site or are starting

from scratch, it’s very possible you can

completely forgo Apache and just use

nginx for all your HTTP needs. If you

choose to go this route, I recommend

you visit the nginx Modules page [2] and

verify that all the functionality you re-

quire is available with an nginx module.

This article describes the common case

of nginx acting as a load balancing re-

verse proxy to multiple existing Apache

httpd back-ends. Nginx will serve some

static content and then automatically

gzip the dynamic content it is proxying

from httpd.

Most Linux distributions have nginx in

their package repositories, so you can

easily install it using the standard pack-

age manager. If the packaged version for

your distro is outdated or not available,

visit http:// nginx. net/ and download the

latest stable version (0.7.61 at the time

this article was written). The installation

involves the standard ./configure &&

make && make install process. Although

the defaults should work in most cases, I

recommend you check out the available

configuration options and tailor them to

suit your environment. By default, you

The fast and practical Nginx web server is easy to configure and extend. BY JEREMY GARCIA

Web service and reverse proxy with the speedy nginx

SMALL BUT POWERFUL

NginxCover Story

28 ISSUE 107 OCTOBER 2009

machine Front-end IP Back-end IP

nginx 10.0.0.1 192.168.1.1

web01 none 192.168.1.2

web02 none 192.168.1.3

Table 1: Layout

J
u

a
n

 J
o
n

es, 12
3

R
f

should see something similar to the fol-

lowing after you run ./configure:

Configuration summary

 + using system PCRE library

 + using system OpenSSL library

 + md5: using OpenSSL library

 + using sha1 library: U

 /usr/include

 + using system zlib library

It’s important to verify that the preced-

ing libraries are found if you plan on

using any of the functionality associated

with them. For instance, the Rewrite

module requires the PCRE library, and

SSL support requires OpenSSL. With

nginx installed, it’s time set up a basic

configuration.

Basic Configuration
This article assumes a three-server infra-

structure. The machine with nginx

should ideally be on both a front-end

public facing network and a back-end

private network. The machines running

httpd do not need any front-end network

access. The layout for this article is

shown in Table 1. With Table 1 in mind,

edit the nginx.conf file with the informa-

tion shown in Listing 1.

This configuration will result in both

back-end machines getting the same

number of requests. By default, nginx

performs simple per-request, round-

robin load balancing. If you’d like re-

quests to be distributed between up-

streams based on the IP address of the

client, you can use the ip_hash directive.

Additional, more advanced load balanc-

ing algorithm support is planned for a

future nginx release. Note that, by de-

fault, all requests passed to the back-end

httpd processes will appear to originate

from the IP address of the nginx ma-

chine. I suggest you pass the IP address

from the original request to httpd via the

X-Forwarded-For HTTP header and then

intercept that information with the httpd

mod_rpaf module, which will change the

remote IP address visible to other httpd

modules. The mod_rpaf module is open

source and available for download [3].

SSL Support
If you’re using nginx as a load balancing

reverse proxy, configuring it to handle

SSL requests has multiple benefits. This

approach simplifies your httpd configu-

ration, offloads the CPU-load associated

with SSL processing, and allows for eas-

ier load balancing, since it resolves the

need to have “sticky” SSL sessions. Con-

figuring SSL support is simple and re-

quires the same CRT and KEY files as an

httpd SSL configuration. Using the proxy

configuration in Listing 1 as a template,

add the settings in Listing 2.

Note that there are two caveats in the

current nginx SSL implementation. The

stable branch does not have certificate

revocation list support. This issue has

been addressed in unstable versions

≥0.8.7. Next, if you have a chain certifi-

cate file (sometimes called an intermedi-

ate certificate), you don’t specify it sepa-

rately as you do in httpd. Instead you

need to add the information from the

chain certificate to the end of your main

certificate file. Do this by typing cat

chain.crt >> server.crt on the command

line. Once that is done, you won’t use

the chain certificate file for anything

else; you simply point ssl_certificate to

the main certificate file.

Static Content and Caching
With this basic setup working, the next

step is for nginx to statically serve some

images. This step will allow you to tune

your back-end httpd processes for dy-

namic content serving. I’ll also serve im-

ages with an expires header of 30 days,

Cover StoryNginx

29ISSUE 107OCTOBER 2009

01 user nobody;

02 worker_processes 2;

03

04 events {

05 worker_connections 1024;

06 use epoll;

07 }

08

09 http {

10 include mime.types;

11 default_type application/octet-stream;

12 log_format custom

 '$http_host $remote_addr - $remote_user [$time_local]

 "$request" '

13 '$status $body_bytes_sent "$http_referer" '

14 '"$http_user_agent"';

15 access_log /path/to/access.log custom;

16 sendfile on;

17 server_tokens off;

18

19 upstream cluster {

20 server 192.168.1.2 weight=1; // the weight can be adjust to send more

21 server 192.168.1.3 weight=1; // traffic to specific machine(s).

22 }

23

24 server {

25 listen 10.0.0.1:80;

26 server_name www.domain.com domain.com;

27 location / {

28 proxy_pass http://cluster;

29 proxy_redirect off;

30 proxy_set_header Host $host;

31 proxy_set_header X-Real-IP $remote_addr;

32 proxy_set_header X-Forwarded-For

 $proxy_add_x_forwarded_for;

33 proxy_buffers 8 32k;

34 }

35 }

36 }

Listing 1: Basic nginx.conf

which will cut down on the number of

requests a client needs to make for com-

mon images that rarely change. To ac-

complish this, add the following to your

server context:

location ~* ^.+\.U

(jpg|jpeg|gif|png)$ {

 root /path/to/www;

 expires 30d;

}

If you’d like to disable logging for im-

ages requests, add the following line to

the configuration:

access_log off;

Next, nginx will gzip some output re-

ceived from the httpd back-ends before

sending it to the browser. The nginx

server will only gzip certain content

based on mime type and will completely

disable gzip for some known-broken

browsers. Add the code in Listing 3 to

your server context.

If you’d like to cache some of your dy-

namic content with nginx, you have two

options; file based or memcached based.

If you’re considering using nginx to

cache content, be careful how you cache

content that differs based on whether a

visitor is logged in or not. To enable the

file-based cache, add the following to the

http context in your configuration file:

proxy_cache_path U

/data/nginx/cache levels=1:2 U

keys_zone=one:10m;

The levels parameter sets the number of

subdirectories for the cache, and the key

and filename are an md5 of the proxyied

URL, resulting in filenames similar to /

data/nginx/cache/c/29/b7f54b2d-

f7773722d382f4809d65029c.

With the cache path set in the http

context, you can now setup your cache

in the http, server, or location context.

To cache all 200 and 302 responses for

30 minutes and all 404 responses for 5

minutes, add the following:

proxy_cache one;

proxy_cache_valid 200 302 30m;

proxy_cache_valid 404 5m;

If you’d prefer to use memcached for

your cache, it’s almost as easy (see List-

ing 4).

Server Statistics
Many monitoring systems support the

httpd mod_status module to gather and

trend statistics. The stub_status module

serves a similar role with nginx. This

module is not compiled by default and

must be enabled with the --with-http_

stub_status_module configure argument.

Once the module is compiled in, add the

code in Listing 5 to your configuration

file. An HTTP request to domain.com/

nginx_status will return a plain text re-

sponse in the format shown in Listing 6.

Additional Modules
The httpd mod_rewrite module is used

by many sites. While nginx does have a

rewrite module, its syntax is slightly dif-

ferent from the one for httpd. The nginx

wiki has the full details [4].

One example of rewrite feature is a

simple rewrite to enable SEO-friendly

member pages:

NginxCover Story

30 ISSUE 107 OCTOBER 2009

01 location /nginx_status {

02 stub_status on;

03 access_log off;

04 allow

TRUSTED.IP.ADDRESSES

05 deny all;

06 }

Listing 5:
stub_status nginx.conf

01 server {

02 location / {

03 set $memcached_key $uri;

04 memcached_pass name:11211;

05 default_type text/html;

06 error_page 404 @

fallback;

07 }

08

09 location @fallback {

10 proxy_pass cluster;

11 }

12 }

Listing 4: memcached
nginx.conf

01 gzip on;

02 gzip_http_version 1.0;

03 gzip_vary on;

04 gzip_min_length 1100;

05 gzip_buffers 16 8k;

06 gzip_comp_level 5;

07 gzip_proxied any;

08 gzip_types text/plain text/css

application/javascript text/

javascript text/xml

application/x-javascript;

09 gzip_disable "MSIE

[1-6]\.";

Listing 3: gzip in
nginx.conf

01 server {

02 listen 10.0.0.1:443;

03 server_name www.domain.com;

04 add_header Front-End-Https on;

05 keepalive_timeout 70;

06 ssl on;

07 ssl_certificate /path/to/server.crt;

08 ssl_certificate_key /path/to/server.key;

09

10 location / {

11 proxy_pass http://cluster;

12 proxy_redirect off;

13 proxy_set_header Host $host;

14 proxy_set_header X-Real-IP $remote_addr;

15 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

16 proxy_buffers 4 32k;

17 proxy_set_header X-Forwarded-Proto https;

18 }

19 }

Listing 2: SSL in nginx.conf

rewrite ^/users/(.*)$ U

/user.php?user=$1? U

 last;

A more complicated re-

write uses an if condition

to redirect your visitors to

a consistent domain:

if ($host ~* www\. U฀

(.*)) {

 set $host_without_ U฀

www $1;

 rewrite ^(.*)$ U

 http://$host_ U฀

without_www$1 U

 permanent;

}

The GeoIP module creates

variables based on the IP

address of the client

matched against the Max-

Mind GeoIP binary files. The nginx GeoIP

module has two prerequisites – libGeoIP

and the MaxMind GeoIP database(s).

The latest libGeoIP is available from the

MaxMind site [5], but keep in mind that

many distributions have libGeoIP in their

package repositories.

Add the following two lines to your

http context to enable the GeoIP module.

geoip_country GeoIP.dat;

geoip_city GeoLiteCity.dat;

You will now have the variables listed on

http:// wiki. nginx. org/

 NginxHttpGeoIPModule at your disposal.

One common use case for the GeoIP

module is to use the $geoip_country_

code variable to send requests to differ-

ent proxy upstreams based on country. If

you’d like to pass the GeoIP information

to you httpd back-ends, add the follow-

ing to your proxy configuration:

proxy_set_header HTTP_GEO $geo;

Table 2 shows some additional nginx

modules, along with a brief overview of

their functionality.

Conclusion
Adding nginx as a caching reverse proxy

to an existing httpd setup can signifi-

cantly increase the performance of your

existing infrastructure. Additionally,

using some of the more advanced fea-

tures in nginx will give you greater flexi-

bility and might allow you to accomplish

tasks that weren’t feasible with your pre-

vious setup. I suggest you read the on-

line documentation (Figure 1) and famil-

iarize yourself with nginx before deploy-

ing it in a production environment. n

Jeremy Garcia is the founder and

admin of LinuxQuestions.org, which

uses nginx to reverse proxy all of its

content and is one of the largest Linux

communities on the web. He has

been using Linux for more than 10

years and is an ardent but realistic

Open Source evangelist.

T
H

E
 A

U
T

H
O

R

Cover StoryNginx

31ISSUE 107OCTOBER 2009

[1] nginx: http:// www. nginx. org

[2] nginx Modules page:

http:// wiki. nginx. org/ NginxModules

[3] mod_rpaf:

http:// stderr. net/ apache/ rpaf/

[4] Nginx Rewrite module: http:// wiki.

 nginx. org/ NginxHttpRewriteModule

[5] MaxMind: http:// geolite. maxmind.

 com/ download/ geoip/ database/

INFO

Figure 1: In addition to configuration examples and resource links, the Nginx community provides a a mailing

list, forum, and IRC channel.

Module Description

HTTP Referer Filter requests based on the Referer header.

HTTP Limit Zone Limit simultaneous connections from a client.

HTTP Limit Requests Limit frequency of connections from a client.

User ID Issue identifying cookies.

HTTP Addition Append arbitrary text to pages.

FLV Flash Streaming Video

Perl Execute Perl directly within Nginx and call Perl via SSI.

WebDAV WebDAV pass-through support.

Substitution Replace text in pages.

Image Filter Transform images with LibGD.

Secure Link Protect pages with a secret key.

XSLT Post-process pages with XSLT.

Table 2: Nginx Modules

01 Active connections: 291

02 server accepts handled requests

03 16630948 16630948 31070465

04 Reading: 6 Writing:

179 Waiting: 106

05 This server has 291 active

connections, has accepted

and handled 16630948 connections

while serving 31070465 requests...

Listing 6: nginx_status
output

