
he experts at the department of

mathematics and computer sci-

ence at the Argonne National

Laboratory [1] were so unhappy about

having to configure their numerous

computer systems manually that they

started an internal research project,

dubbed Bcfg2 [2], that they later re-

leased under the BSD license.

Bcfg2 provides a sophisticated system

for describing and deploying complete

client configurations. This flexible tool

uses a comprehensive XML format to

describe the configurations, and RPC to

communicate with the clients.

Experts will find Bcfg2 easy to extend,

but the learning curve is steep – the pro-

gram uses a powerful, abstract ap-

proach.

Bcfg2 supports various platforms, in-

cluding openSUSE, Fedora, Gentoo, and

Debian, as well as their many deriva-

tives. The tool also runs on FreeBSD,

AIX, Solaris, and Mac OS X through the

use of the developer’s distribution-inde-

pendent Encap packages [3] on top of

the ready-to-run client and server pack-

ages. As an alternative, you can check

out the openSUSE Build Service [4],

The powerful Bcfg2 provides a sophisticated environment for centralized configuration management.

BY MARKO JUNG AND NILS MAGNUS

Tag Description Example

Package Name of the software package <Package name='bcfg2'/ >

ConfigFile Absolute path of the configuration file <ConfigFile name='/ etc/ bcfg2.conf'/ >

Service Name of the init script for the service

 (not of the respective daemon) <Service name='ntpd'/ >

Directory Absolute path of the directory in the

 filesystem <Directory name='/ var/ tmp'/ >

SymLink Absolute path of the smybolic link <SymLink name='/ dev/ MAKEDEV'/ >

Permissions Permissions of the absolute path <Permissions name='/ etc/ pass-

words'/ >

Table 1: Entry Configuration Types

Bcfg2

30 ISSUE 101 APRIL 2009

030-034_bcfg.indd 30 12.02.2009 13:41:32 Uhr

which offers the package for a number

of other platforms.

To manage specifications, Bcfg2 uses a

server that communicates with a fairly

lean counterpart on the client. To install

both the server and the client, which

comprises just a couple of lines of Py-

thon code, you can use the package

manager for your distribution.

To get the client to request updates

from the server at regular intervals, you

need to create a crontab entry. Alterna-

tively, you can run Bcfg2 as a back-

ground process. In that case, the server

will actively contact the agent.

Settings on managed systems are con-

figured at the Bcfg2 server. For each cli-

ent, the server stores a description,

which it generates from a central specif-

ication.

At the highest level, Bcfg2 works with

profiles that describe classes of identical

computers, such as desktop systems or

web servers. Each managed machine has

exactly one profile.

Specific logical system areas within

the profile are organized into groups,

such as office software or network set-

tings. The groups, which can be nested

recursively, let administrators organize

configuration specifications in a mean-

ingful way.

Each group in turn is made up of an

arbitrary number of bundles with scope

that typically extends to a single soft-

ware product, such as Postfix, Open-

Office, or the nameswitch mechanism.

Profiles, groups, and bundles are de-

fined in the metadata/groups.xml file

(see Listing 1).

Bundles can be broken down still fur-

ther: Bcfg2 groups the configuration files

and software packages belonging to a

specific system service in a file below

the Bundler directory. For example, the

Bundler/motd.xml file defines the con-

figuration bundle for the /etc/motd wel-

come message:

<Bundle name=

'motd' version='2.0'>

 <Package name='login' />

 <ConfigFile name=

 '/etc/motd' />

</Bundle>

Some nicely commented examples of

bundles are available from the project’s

wiki [5]. Bundles contain a number of

configuration items, which Bcfg2 aptly

refers to as entries.

The system defines six different entry

types (see Table 1): The ConfigFile type

manages a file and its content; the Direc-

tory, Permission, and SymLink types let

administrators manage or monitor ob-

jects. The Package and Service types of

entries have more in the way of artificial

intelligence.

Bcfg2 abstracts the distribution-spe-

cific methods used to, for example, in-

stall a package on a client; that is, it will

call aptitude on a Debian system and

rpm or yum on an openSUSE system.

The same principle applies to system

services that are typically listed in

/etc/init.d.

The abstract structure that describes the

client is managed entirely on the server

side. Typing bcfg2-admin init initializes a

new configuration.

First, you are prompted for the details

of the repository path, an SSL certificate

for secure communications with the cli-

ents, and an access password. The Bcfg2

admin script then goes on to create sev-

eral files and directories and populate

the /etc/bcfg2.conf configuration file

with meaningful defaults. You might

need to modify the entry in the [compo-

01 <Groups>

02 <Group name='desktop' profile='true'>

03 <Bundle name='motd' />

04 <Bundle name='networking' />

05 <Group name='office-workstation' />

06 <Group name='debian-stable' />

07 </Group>

08

 09 <Group name='webserver' profile='true'>

10 <Group name='apache' />

11 <Bundle name='networking' />

12 <!-- ... --!>

13 </Group>

14

 15 <Group name='office-workstation'>

16 <Group name='gnome-desktop' />

17 <!-- ... --!>

18 </Group>

19

 20 <Group name='debian-stable'

21 toolset='debian' />

22 </Groups>

Listing 1: Bundle and Subgroup Definitions

01 01 <Clients>

02 02 <Client profile="desktop"

03 name="alpha.example.com" pingable="N"/>

04 03 <Client profile="desktop"

05 name="beta.example.com" pingable="Y"/>

06 04 <Client profile="webserver"

07 name="gamma.example.com" pingable="N"/>

08 05 <!-- .. --!>

09 06 </Clients>

Listing 2: Registering Clients

Bcfg2

31ISSUE 101APRIL 2009

030-034_bcfg.indd 31 12.02.2009 13:41:33 Uhr

nents] section to match the hostname,

which your clients can resolve with

DNS.

This name is also the perfect choice

for the Common Name when you gener-

ate a certificate. bcfg2-admin might cre-

ate the file as read-only, but you will

want to change this because it contains

the client access password.

Additionally, the tool sets up an empty

configuration repository below /var/lib/

bcfg2. Calling /etc/init.d/bcfg2-server

start launches the server.

The only component you need to install

on the client is the bcfg2 client package.

Additionally, you need to store the con-

figuration file in /etc/bcfg2.conf.

The next step is to add each Bcfg2 cli-

ent to the Metadata/clients.xml file on

the server (Listing 2). All specifications

use the XML format. The administrator

can later assign profiles to hosts by using

this file.

Bcfg2 identifies clients by their DNS

names, which makes it important to

have a working DNS system. The exam-

ple assigns the desktop profile to the

hosts alpha and beta.example.com and

webserver to gamma.example.com. Bcfg2

is now ready for action.

An update process consists of multiple

steps (see Figure 1): The client first re-

trieves its XML-formatted configuration

from the server, performs an inventory,

and compares the current and target

states. After completing all the changes

associated with the update, the client

again checks the vectors and informs the

server of the results. The server gener-

ates reports and statistics on the basis of

the information.

To check the reports, the system ad-

ministrator can trigger a test update. To

trigger an update on the client side, type

the following:

bcfg2 -q -v -n

This command launches the update pro-

cess in a non-invasive, no-op mode (-n

option). The -q option, which stands for

quick, omits some checks. The -v option

provides more information. Listing 3

shows the results of this kind of query.

So far, the specification is still empty.

Bcfg2 will not display correct (line 5) or

incorrect (line 6) entries because the

server does not having a single configu-

ration entry in its central repository (line

7). The number of unmanaged entries in

line 8 is more interesting: The Bcfg2 cli-

ent has found 242 configuration objects

that the administrator has not explicitly

configured. The server will want to reg-

ister and manage these objects in the fu-

ture. These entries are mainly Service-

and Package-type items added on the cli-

ent side by the Linux distribution. Line 2

tells more about them.

Bcfg2 has automatically identified the

distribution as one that uses the Chkcon-

fig service to configure init services and

RPM as its package manager. A Debian

system would use update-rc.d and the

DEB package format.

Because the bcfg2 command has just

requested an update without changes,

the details in lines 10 through 14 match

the values in the lines above. It is now

up to the system administrator to view

the unmanaged entries one by one and

add any appropriate definitions. Stipulat-

ing the -e option tells the system to detail

the entries. One of Bcfg2’s main

strengths is its ability to gradually com-

plete an incomplete configuration.

The update process is the core element

in any configuration management sys-

tem, and it makes sense to examine this

process in more detail. The process com-

prises three phases.

In the initial phase, the client connects

with the server and performs a number

01 Loaded tool drivers:

02 Chkconfig POSIX

PostInstall RPM

03

 04 Phase: initial

05 Correct entries: 0

06 Incorrect entries: 0

07 Total managed entries: 0

08 Unmanaged entries: 242

09

 10 Phase: final

11 Correct entries: 0

12 Incorrect entries: 0

13 Total managed entries: 0

14 Unmanaged entries: 242

Listing 3: Non-Configured
Server

Bcfg2

32 ISSUE 101 APRIL 2009

030-034_bcfg.indd 32 12.02.2009 13:41:34 Uhr

Anzeige
wird
separat
angeliefert

030-034_bcfg.indd 33 12.02.2009 13:41:34 Uhr

of tests, known as probes. These probes

take the form of short shell scripts that

run on the client side. Depending on the

results, the server might add groups or

bundles to the client specification. A test

will simply return a result of group:group

name.

The server automatically assigns the

client to additional groups. This means

that it will automatically add, say, a

matching modem bundle if it discovers

lspci on the client. For more examples

and an exhaustive HOWTO, see the

Bcfg2 website [6].

In the second phase, the client receives

the configuration description from the

server. This description contains many

configuration entries of the six basic

types. The client does a local inventory

to create a comparable structure and

then goes on to compare the local inven-

tory with the description from the server.

In case of deviations, the client will per-

form changes depending on the corre-

sponding configuration element types:

The Bcfg2 client will resolve differences

between configuration files by using the

version defined on the server.

If a service is not running, the client

will start it. Dependencies between con-

figuration elements are resolved auto-

matically.

The client repeats this process until no

further progress is made – that is, until

the next call to the update process fails

to make any changes.

In the third and final phase, the client

generates a report containing the system

status and other details, including the

number of correct and incorrect configu-

ration entries and the number of non-

managed objects on the system. The cli-

ent sends this message to the server,

which then processes it to create web

pages, RSS feeds, and email.

The core of any Bcfg2 system is the

configuration specification. Administra-

tors use it to describe the target configu-

rations for the systems they manage.

This process occurs in two stages: Bcfg2

refers to the structure looked at earlier,

as well as the profiles, groups, and bun-

dles it contains as metadata. The meta-

data define the elements that Bcfg2

needs to configure for a client.

When a client sends a request to a

server, the server generates the abstract

configuration from the matching meta-

data (see Figure 2). This template con-

tains all the required configuration en-

tries for the target system, but without

any content. For example, a ConfigFile

element contains a file name, but not the

file content.

After the server has created the frame-

work of the configuration, it uses gener-

ators to bind tangible information to

each entry. Bcfg2 uses a number of gen-

erators written in Python.

The administrator needs to run the fol-

lowing command

generators = Cfg, Pkgmgr,

Rules, TCheetah

to add them to the /etc/bcfg2.conf file.

Each registered generator is capable of

instantiating a number of configuration

elements.

In simple cases, the Cfg generator will

return a static file, and in more complex

cases, a TCheetah generator will use a

template and script language to retrieve

the file content from a database entry.

Other generators handle configuration

elements, such as services and packages.

Consequently, Bcfg2 is capable of using

almost any data source to compile a tan-

gible configuration (see Figure 3).

The Cfg plugin mainly generates content

for ConfigFile-type entries. To configure

an element, the administrator creates a

subdirectory below Cfg in the repository

with the same name as the correspond-

ing bundle. Then you create a static file

in the directory and let Bcfg2 distribute

the file to all your clients.

To define the target clients, you can

add suffixes to file names. The H_Host-

name suffix distributes the file to the

specified machines only; GPrio_Group

sends the file to all systems that have the

specified group profile. If a host belongs

to multiple groups, Bcfg2 applies the

highest priority file.

An :info file in the same directory de-

fines permissions, with entries like:

owner: root

group: admin

perms: 0644

Also, you can specify values such as the

Bcfg2 encoding or the behavior for local

changes. The functionality provided by

01 Welcome to $self.metadata.hostname!

02

 03 This system is managed by Bcfg2. It is a

04 member of the following groups:

05

 06 #for $group in $self.metadata.groups:

07 * $group

08 #end for

Listing 4: Script for an Automtic motd

Bcfg2

34 ISSUE 101 APRIL 2009

030-034_bcfg.indd 34 12.02.2009 13:41:34 Uhr

the Cfg generator helps you manage a

major part of the system; however, it

does not always offer the flexibility re-

quired to manage large-scale systems.

To manage large networks, the Bcfg2

developers created the TCheetah genera-

tor, based on the Cheetah template lan-

guage [7]. Cheetah supports instructions

that range from simple string operations,

to flow control, to Python code embed-

ded directly in configuration files.

TCheetah adopts the Cfg generator’s

directory structure with directories

below /var/lib/bcfg2/TCheetah represent-

ing the configuration elements. Each di-

rectory contains an info file with the

same content as the Cfg generator, along

with a template configuration. Cheetah

code, which can contain some Bcfg2-

specific extensions, is then added. Drop-

ping Listing 4 into /var/lib/bcfg2/TChee-

tah/etc/motd/template would create a

dynamic message of the day. The TChee-

tah Generator replaces $self.metadata.

hostname with the actual values and

then runs the loop that starts with #for.

A database lets you retrieve configura-

tion information from more data

sources. For example, you could auto-

matically generate the DHCP, DNS, and

NIS configuration data from a source

such as a directory service. The example

in Listing 5 shows how TCheetah on De-

bian configures the network interfaces in

/etc/network/interfaces on the basis of

data from a PostgreSQL database.

Configurations do not just apply to file

entries. System services must be config-

ured to reflect the runlevels. The Service

generator reads the administrative infor-

mation in Svcmgr/services.xml to dis-

cover how to configure, say, the NTP

service.

To do so, the server references the ser-

vice referred to as <service name=

'ntpd' /> in the matching bundle.

Then, services.xml is used to specify

whether or not the client should start the

service:

<Services priority='0'>

 <Service name=

 'ntpd' status='on' />

</Services>

The generator converts these details to

tangible configurations and sends them

to the client, which then applies distri-

bution-specific methods to enable or dis-

able the service.

Bcfg2 does not replace the package man-

ager, but it can have the effect of shifting

more control from the package manager

to the system administrator, who can use

Bcfg2 to specify which version of which

individual package the tool installs. XML

files manage information about the

available packages and synchronize the

details with the installation server pack-

age selection. Multiple installation serv-

ers allow administrators to assign differ-

ent priorities – for example, for security

updates.

The Bcfg2 client compares global and

local package versions and upgrades or

downgrades accordingly. Administrators

can freeze special versions by assigning

them the highest priority.

Other generators configure directories,

symlinks, and many other element

types. Some more experienced adminis-

trators will appreciate the ability to use

plugins to bind Python functions to the

generators provided with the Bcfg2 dis-

tribution.

The lively developer community that

surrounds Bcfg2 integrates new designs

with the system almost every week. Just

recently, a new team that will be focus-

ing on improving the documentation

was founded on the mailing list [8]. Doc-

umentation is absolutely vital because

Bcfg2 requires that you know so many

details of the system.

Administrators will also appreciate the

tool’s support for gradual migration,

which removes the need for drastic

changes and allows step-by-step specifi-

cation of the configuration. All told, the

use of Bcfg2 to configure and validate

clients is a very powerful tool for anyone

who is undaunted by its high level of

abstraction. p

01 #from Bcfg2.Server.dbconnection import DBPgConnection

02 #silent result = DBPgConnection().execute(

03 "SELECT ip, netmask, broadcast, gateway \

04 FROM hosts \

05 WHERE hostname = '%s'" % $self.metadata.hostname)

06

 07 auto eth0

08 iface eth0 inet static

09 address $result[0]

10 netmask $result[1]

11 broadcast $result[2]

11 gateway $result[3]

Listing 5: TCheetah-Configured Network/Iinterfaces

Marko Jung is an IT consultant

who advises small to mid-sized

businesses on migration projects

and the deployment of free

 software.T
H

E
 A

U
T

H
O

R

[1] Argonne National Library,

 Mathematics and Computer Science

 Division:

http:// www-new. mcs. anl. gov/ new

[2] Bcfg2: http:// www. bcfg2. org

[3] Bcfg2 Encap packages:

http:// trac. mcs. anl. gov/ projects/

 bcfg2/ wiki/ EncapPackages

[4] Bcfg2 packages on the openSUSE

Build Service: http:// download.

 opensuse. org/ repositories/ home:/

 markojung:/ bcfg2

[5] Bcfg2 annotated examples:

http:// www. bcfg2. org/ wiki/

 AnnotatedExamples

[6] Bcfg2 probes: http:// trac. mcs. anl.

 gov/ projects/ bcfg2/ wiki/ Probes

[7] Cheetah template engine:

http:// www. cheetahtemplate. org

[8] Bcfg2 mailing list:

mailto:bcfg-dev@mcs. anl. gov

INFO

Bcfg2

35ISSUE 101APRIL 2009

030-034_bcfg.indd 35 12.02.2009 13:41:34 Uhr

