
riginally, I intended to write an 

article about the current state of 

rootkits and the tools that could 

be used to detect them. But I ran into a 

slight problem – the more modern root-

kits tend to be really good at avoiding 

detection. By really good, I mean that 

you’re unlikely to detect them unless 

you take action, such as a detailed analy-

sis of a system memory dump, for exam-

ple, comparing the actual kernel image 

with the expected.

Traditional rootkits were relatively sim-

plistic programs, often running as a 

standalone daemon providing backdoor 

access. These were generally easy to de-

tect by looking for a new process or 

newly installed software, which led at-

tackers to start subverting system bina-

ries. In turn, this led to attackers install-

ing modified system binaries, such as 

hacked versions of OpenSSH that have a 

hard-coded administrative username and 

password to get root-level access. With 

the advent of tools such as Tripwire and 

the increasingly common use of package 

managers that can verify the integrity of 

installed files, such as RPM and dpkg, 

these became easy to detect [1].

Soon attackers realized that more so-

phisticated hiding and subversion meth-

ods were needed to control a system, 

which led to kernel-based rootkits. By 

modifying the system call table, an at-

tacker can avoid detection easily be-

cause, simply put, they control what you 

are seeing and how your programs are 

executing. 

Typically attackers use one of two 

methods to modify the system kernel: ei-

ther loading a malicious kernel module 

(e.g., heroin) or patching the in-memory 

kernel by writing to the special device /

dev/kmem (e.g., SucKIT). Because these 

attacks live in memory only, their disad-

vantage is that they typically do not sur-

vive a reboot.

Difficult as they can be to detect, these 

rootkits can be found by comparing the 

current system call table with the ex-

pected (i.e., by examining the file Sys-

tem.map). Dumps of system memory 

can be taken and used to verify that the 

kernel in memory is correct.

So what are attackers to do? Go 

deeper, of course.

Released in 2006 at Black Hat in Vegas, 

the first publicized hardware-based root-

kit was called “Blue Pill” [2]. Modern 

CPU’s from AMD and Intel include a 

number of features that support virtual-

ization of operating systems. Because 

they no longer need to modify the oper-

ating system to work, these rootkits are 

harder to detect, so checking your sys-

tem call table won’t work. However, 

these rootkits do replace the Interrupt 

Descriptor Table (IDT), which is held 

within a CPU register (the IDTR) [3].

Because two IDTRs (the real one and 

the one being presented to the compro-

mised operating system) now exist, the 

one being presented to the compromised 

operating system will be at a different 

memory location than usual. Fortu-

nately, the privileged instruction Store 

Interrupt Descriptor Table (SIDT) can be 

run from user space and will reliably re-

turn the contents of the IDTR being pre-

sented to the operating system (which 

isn’t very helpful because it has been 

compromised) and, more importantly, 

the memory location (which won’t be in 

the normal location).

This appears to be a stalemate: The at-

tackers have created new methods to 
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hide rootkits, and the defenders have 

found ways to detect them.

Released in September 2008 by Immu-

nity Inc., DR RootKit [4] implements sys-

tem call hooking within Linux 2.6 ker-

nels without modifying the system call 

table or the interrupt descriptor table. To 

do this, it places a hardware breakpoint 

on the syscall handler. This trap places a 

memory watch on the syscall_table entry 

__NR_syscall, which is used to export 

system call numbers. Basically, the root-

kit behaves like a debugging tool, wait-

ing for specific system calls to be exe-

cuted, and when it sees them, it modi-

fies them on the fly. Currently, the DR 

RootKit hooks the system calls listed in 

Table 1.

The DR RootKit includes capabilities 

such as hiding processes and preventing 

hidden processes (meaning that the at-

tacker can run software that is hidden, 

and you can’t kill it even if you manage 

to guess the process ID) from being ter-

minated. Using the examples provided 

with the package, it is relatively easy to 

extend and create additional modified 

system calls. For example, you might 

want to modify the capset so that you 

can set process capabilities at will. The 

rootkit itself is a loadable kernel module, 

which makes it easy to insert once you 

have compromised a system, but like 

other memory-based rootkits, a system 

reboot will remove it from memory.

If you want to extend the rootkit, you 

can insert your own custom system calls. 

An example is given for replacing the 

exit system call. Simply put, the process 

consists of declaring your own hook to 

replace a system syscall and then writing 

a custom system call implementation – 

simple, really. The best place to start is 

with the kernel source – specifically, the 

kernel/ subdirectory where most of the 

common system calls are defined. For 

example, if you have a system in which 

capabilities are in use to restrict what 

programs can and cannot do, you can 

modify the do_sys_capset_other_tasks 

system call to call a modified cap_set_

all, which always returns all capabilities 

for a specific process ID, such as:

@@ -237,6 +237,9 @@

if (!capable(CAP_SETPCAP))

return -EPERM;

+  if (pid == 12345)

/* magic process number*/

+  return cap_set_all_evil

(effective, inheritable, 

permitted);

As you can see, even a minor modifica-

tion can have a significant effect. Sud-

denly, the process with ID 12345 will al-

ways have all capabilities, allowing it to 

do pretty much anything it wants. With 

just one system call, an attacker can cre-

ate an effective backdoor.

Virtually the only way to detect this 

rootkit is through the measurement of 

timing or race conditions that are intro-

duced by the rootkit. If a rootkit is pres-

ent, the system should run a little slower 

than usual, but measuring this reliably is 

not an easy task, especially on produc-

tion systems. Also, the software is rela-

tively simplistic and can be extended 

easily to hide itself better, making detec-

tion even harder.

Of course, you can compromise a system 

and retain access in other ways while 

also staying hidden. Another penetration 

testing software company called Core Se-

curity [5] has taken the approach of in-

jecting hostile code into the process that 

has been attacked. For example, if you 

exploit an Apache httpd server, you can 

inject code into the process that will 

allow you to have remote access. This 

technique is somewhat limited com-

pared with a full kernel or hardware-

based rootkit, and it also is less likely to 

affect the entire system, making it 

stealthier. The primary disadvantage of 

this technique is that operating system-

level protection mechanisms, such as 

SELinux, will still be able to enforce se-

curity policy. However, for targeted at-

tackers, this is often not a serious prob-

lem because they can either use local ex-

ploits to compromise the system further 

or stay within the behavioral confines of 

an SELinux policy and still extract infor-

mation or use the system to execute 

other malicious attacks.

The good news is that by going to the 

hardware level, the attackers have (con-

ceptually) run out of room to go. The 

bad news is that any number of hard-

ware tricks can be used to maintain con-

trol over a compromised system. For ex-

ample, a modern graphics card typically 

has direct memory access (meaning it 

can do pretty much anything it wants to 

the system memory without the operat-

ing system having much say in the pro-

cess), its own onboard memory, and a 

large amount of processing power (to the 

point where people are using them as a 

poor man’s computing cluster). Newer 

cards have flash memory to hold firm-

ware that can be updated from software, 

and I have no doubt that one day, people 

will be working on how to use your 

video card to maintain control over a 

compromised system.  p

getdents64 Read directory entries

getdents Read directory entries

chdir Change working directory

open Open a file or device

execve Execute program

socketcall Socket system calls

fork Create a child process

exit  Terminate the current pro-

cess

kill Send signal to a process

getpriority  Get program scheduling 

priority

Table 1: System Calls
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