
riginally, I intended to write an

article about the current state of

rootkits and the tools that could

be used to detect them. But I ran into a

slight problem – the more modern root-

kits tend to be really good at avoiding

detection. By really good, I mean that

you’re unlikely to detect them unless

you take action, such as a detailed analy-

sis of a system memory dump, for exam-

ple, comparing the actual kernel image

with the expected.

Traditional rootkits were relatively sim-

plistic programs, often running as a

standalone daemon providing backdoor

access. These were generally easy to de-

tect by looking for a new process or

newly installed software, which led at-

tackers to start subverting system bina-

ries. In turn, this led to attackers install-

ing modified system binaries, such as

hacked versions of OpenSSH that have a

hard-coded administrative username and

password to get root-level access. With

the advent of tools such as Tripwire and

the increasingly common use of package

managers that can verify the integrity of

installed files, such as RPM and dpkg,

these became easy to detect [1].

Soon attackers realized that more so-

phisticated hiding and subversion meth-

ods were needed to control a system,

which led to kernel-based rootkits. By

modifying the system call table, an at-

tacker can avoid detection easily be-

cause, simply put, they control what you

are seeing and how your programs are

executing.

Typically attackers use one of two

methods to modify the system kernel: ei-

ther loading a malicious kernel module

(e.g., heroin) or patching the in-memory

kernel by writing to the special device /

dev/kmem (e.g., SucKIT). Because these

attacks live in memory only, their disad-

vantage is that they typically do not sur-

vive a reboot.

Difficult as they can be to detect, these

rootkits can be found by comparing the

current system call table with the ex-

pected (i.e., by examining the file Sys-

tem.map). Dumps of system memory

can be taken and used to verify that the

kernel in memory is correct.

So what are attackers to do? Go

deeper, of course.

Released in 2006 at Black Hat in Vegas,

the first publicized hardware-based root-

kit was called “Blue Pill” [2]. Modern

CPU’s from AMD and Intel include a

number of features that support virtual-

ization of operating systems. Because

they no longer need to modify the oper-

ating system to work, these rootkits are

harder to detect, so checking your sys-

tem call table won’t work. However,

these rootkits do replace the Interrupt

Descriptor Table (IDT), which is held

within a CPU register (the IDTR) [3].

Because two IDTRs (the real one and

the one being presented to the compro-

mised operating system) now exist, the

one being presented to the compromised

operating system will be at a different

memory location than usual. Fortu-

nately, the privileged instruction Store

Interrupt Descriptor Table (SIDT) can be

run from user space and will reliably re-

turn the contents of the IDTR being pre-

sented to the operating system (which

isn’t very helpful because it has been

compromised) and, more importantly,

the memory location (which won’t be in

the normal location).

This appears to be a stalemate: The at-

tackers have created new methods to

We look at the history of the rootkit, including its newest incarnation,

the DR RootKit. BY KURT SEIFRIED

Security Lessons

64 ISSUE 97 DECEMBER 2008

064-065_kurt.indd 64 16.10.2008 16:28:45 Uhr

hide rootkits, and the defenders have

found ways to detect them.

Released in September 2008 by Immu-

nity Inc., DR RootKit [4] implements sys-

tem call hooking within Linux 2.6 ker-

nels without modifying the system call

table or the interrupt descriptor table. To

do this, it places a hardware breakpoint

on the syscall handler. This trap places a

memory watch on the syscall_table entry

__NR_syscall, which is used to export

system call numbers. Basically, the root-

kit behaves like a debugging tool, wait-

ing for specific system calls to be exe-

cuted, and when it sees them, it modi-

fies them on the fly. Currently, the DR

RootKit hooks the system calls listed in

Table 1.

The DR RootKit includes capabilities

such as hiding processes and preventing

hidden processes (meaning that the at-

tacker can run software that is hidden,

and you can’t kill it even if you manage

to guess the process ID) from being ter-

minated. Using the examples provided

with the package, it is relatively easy to

extend and create additional modified

system calls. For example, you might

want to modify the capset so that you

can set process capabilities at will. The

rootkit itself is a loadable kernel module,

which makes it easy to insert once you

have compromised a system, but like

other memory-based rootkits, a system

reboot will remove it from memory.

If you want to extend the rootkit, you

can insert your own custom system calls.

An example is given for replacing the

exit system call. Simply put, the process

consists of declaring your own hook to

replace a system syscall and then writing

a custom system call implementation –

simple, really. The best place to start is

with the kernel source – specifically, the

kernel/ subdirectory where most of the

common system calls are defined. For

example, if you have a system in which

capabilities are in use to restrict what

programs can and cannot do, you can

modify the do_sys_capset_other_tasks

system call to call a modified cap_set_

all, which always returns all capabilities

for a specific process ID, such as:

@@ -237,6 +237,9 @@

if (!capable(CAP_SETPCAP))

return -EPERM;

+ if (pid == 12345)

/* magic process number*/

+ return cap_set_all_evil

(effective, inheritable,

permitted);

As you can see, even a minor modifica-

tion can have a significant effect. Sud-

denly, the process with ID 12345 will al-

ways have all capabilities, allowing it to

do pretty much anything it wants. With

just one system call, an attacker can cre-

ate an effective backdoor.

Virtually the only way to detect this

rootkit is through the measurement of

timing or race conditions that are intro-

duced by the rootkit. If a rootkit is pres-

ent, the system should run a little slower

than usual, but measuring this reliably is

not an easy task, especially on produc-

tion systems. Also, the software is rela-

tively simplistic and can be extended

easily to hide itself better, making detec-

tion even harder.

Of course, you can compromise a system

and retain access in other ways while

also staying hidden. Another penetration

testing software company called Core Se-

curity [5] has taken the approach of in-

jecting hostile code into the process that

has been attacked. For example, if you

exploit an Apache httpd server, you can

inject code into the process that will

allow you to have remote access. This

technique is somewhat limited com-

pared with a full kernel or hardware-

based rootkit, and it also is less likely to

affect the entire system, making it

stealthier. The primary disadvantage of

this technique is that operating system-

level protection mechanisms, such as

SELinux, will still be able to enforce se-

curity policy. However, for targeted at-

tackers, this is often not a serious prob-

lem because they can either use local ex-

ploits to compromise the system further

or stay within the behavioral confines of

an SELinux policy and still extract infor-

mation or use the system to execute

other malicious attacks.

The good news is that by going to the

hardware level, the attackers have (con-

ceptually) run out of room to go. The

bad news is that any number of hard-

ware tricks can be used to maintain con-

trol over a compromised system. For ex-

ample, a modern graphics card typically

has direct memory access (meaning it

can do pretty much anything it wants to

the system memory without the operat-

ing system having much say in the pro-

cess), its own onboard memory, and a

large amount of processing power (to the

point where people are using them as a

poor man’s computing cluster). Newer

cards have flash memory to hold firm-

ware that can be updated from software,

and I have no doubt that one day, people

will be working on how to use your

video card to maintain control over a

compromised system. p

getdents64 Read directory entries

getdents Read directory entries

chdir Change working directory

open Open a file or device

execve Execute program

socketcall Socket system calls

fork Create a child process

exit Terminate the current pro-

cess

kill Send signal to a process

getpriority Get program scheduling

priority

Table 1: System Calls

Security Lessons

65ISSUE 97DECEMBER 2008

Kurt Seifried is an

Information Secu-

rity Consultant spe-

cializing in Linux

and networks since

1996. He is married

and has four cats

but no fish (because

the cats are more hungry than afraid

of water). He often wonders how it is

that technology works on a large

scale but often fails on a small scale.

T
H

E
 A

U
T

H
O

R

[1] “Secret Passage: Techniques for

Building a Hidden Backdoor” by

Amir Alsbih, Linux Magazine, April

2007: http:// www. linux-magazine.

 com/ issues/ 2007/ 77/ secret_passage

[2] Blue Pill: http:// bluepillproject. org/

[3] Red Pill: http:// www. invisiblethings.

 org/ papers/ redpill. html

[4] DR RootKit:

http:// www. immunityinc. com/

 resources-freesoftware. shtml

[5] Core Security Technologies:

http:// www. coresecurity. com/

INFO

064-065_kurt.indd 65 16.10.2008 16:28:47 Uhr

