

A forensics expert explains how to extract interesting details from a confiscated Windows hard disk using

standard Linux tools. BY HANS-PETER MERKEL AND MARKUS FEILNER

riminals, intruders, and corporate saboteurs leave data behind on the hard disks of any computers they visit. Many of these computers are Windows systems, but you don't need Windows to extract valuable forensic information from a Windows hard disk. In this article, I will describe some simple techniques for getting forensic data from a Windows disk using Linux.

Before starting any forensic analysis, it is important to create a copy of the storage medium you will be investigating, either as a 1:1 copy or as an image or collection of images. You can copy the medium as a raw image (with *dd*) or use a format such as Expert Witness Format (EWF).

EWF is a proprietary format developed by Guidance Software [1] that is also supported by the X-Ways [2] commercial forensic tool. EWF images are compressed and thus are far smaller than raw images.

Linux tools such as Linux Encase (Linen) or Ewfacquire [3] will help you create an EWF image. Linen is included on the Helix forensics CD [4] as a free contribution by Guidance Software, but the *dd* tool, which is included on any Linux distribution, will normally do the trick. If you use *dd*, you can even launch a copy of the Windows system in a virtual environment such as VMware; EWF will not let you launch Windows without the proprietary add-on software because of its compressed format.

A command such as *dd* if = /*dev*/sda of = win_hd.dd bs = 4096 conv = noerror, sync will create a *dd* image. Instead of

	Shell - Konsole	_ O X
Session Edit View Bookmarks Setting	is Help	
3aefa1c534d80696705e00058b1075e4	/mnt/WINNT/ServicePackFiles/i386/rdpdr.sys	1
f6ccf6655d5ae345d0f9fa1aa10e8af8	/mnt/WINNT/ServicePackFiles/i386/rdpwd.sys	
a83295e9f4a5595b22bcf099b226e919	/mnt/WINNT/ServicePackFiles/i386/rdpwsx.dll	
64324372b5e40ff63d0d09137affa55f	/mnt/WINNT/ServicePackFiles/i386/recover.exe	
1c3a3358ae96408a268e63846e099ee7	/mnt/WINNT/ServicePackFiles/i386/redbook.sys	
3a765fcdd074c2ac8a3d74568bce2afb	/mnt/WINNT/ServicePackFiles/i386/regapi.dll	
36a133a04d05fccca2711f0344990cd8	/mnt/WINNT/ServicePackFiles/i386/regedit.exe	
ce72869decec80a6a9621d68e7250383	/mnt/WINNT/ServicePackFiles/i386/regedt32.exe	
973a97bb48b5b39e7567b6f88c03005e	/mnt/WINNT/ServicePackFiles/i386/regsvc.exe	
b5f69b14db26bc85fba055ed6ed381f8	/mnt/WINNT/ServicePackFiles/i386/regsvr32.exe	
2515a821e203eafa34aca05858bbad4a	/mnt/WINNT/ServicePackFiles/i386/rend.dll	
d01784b9ad9665453a45ad5c1017f24e	/mnt/WINNT/ServicePackFiles/i386/resutils.dll	
1a6cfe1b7084cb761427e63597724438	/mnt/WINNT/ServicePackFiles/i386/riched20.dll	
aa41c6c3085a4339c5976e3b09825494	/mnt/WINNT/ServicePackFiles/i386/msdxm.ocx	
c5da1a7860aec9a2c369337acded7fe7	/mnt/WINNT/ServicePackFiles/i386/msdxmlc.dll	
a9b59188f0256dfaad2127a1c7d47965	/mnt/WINNT/ServicePackFiles/i386/msexch40.dll	
99c7a814d9c16c1e99c806583902fb52	/mnt/WINNT/ServicePackFiles/i386/msexcl40.dll	
5022e14956d8447959dc90e58d060688	/mnt/WINNT/ServicePackFiles/i386/msg.exe	
7572b1ee3652cd79bcbeeda03d81be4e	/mnt/WINNT/ServicePackFiles/i386/msgina.dll	
6667d07854a3ae7715d22b82761cf0e7	/mnt/WINNT/ServicePackFiles/i386/msgpc.sys	
73d9a54e33a9dcf23aa48a367bcb4e24	/mnt/WINNT/ServicePackFiles/i386/msgsvc.dll	
69f2594dafb0b946740022d49ecb5f91	/mnt/WINNT/ServicePackFiles/i386/mshdc.inf	
48315f8452a7db59a56aca28541eab92	/mnt/WINNT/ServicePackFiles/i386/mshta.exe	-
f59a23e61fc06f1d64f7b82caf13be9b	/mnt/WINNT/ServicePackFiles/i386/mshtml.dll	
A Shell		

Figure 1: Md5sum can create unique hashes for the files on a Windows filesystem. You can compare the values in the first column with the hash values for known files.

/*dev/sda*, just specify the disk you want to copy. The block size *bs* = 4096 accelerates the copy. The *conv* parameter ensures that the copy will not terminate if it encounters defective sectors.

By entering *fdisk* -*lu*, you can obtain information on the disk image. The administrator simply needs to pass in the image name (Listing 1).

In Listing 1, the image contains a partition; the filesystem is NTFS. The *disktype* program from the standard Debian repositories provides more information (Listing 2). The partition obviously contains the Windows bootloader.

To access the filesystem, the administrator first needs to mount it. The partition starts with sector 63, which is normal for a hard disk. The exception to this is Microsoft's latest offspring, Windows Vista, in which the first sector is 2047. The *mount* command thus specifies the matching offset:

losetup -o \$((63*512)) 2
/dev/loop0 U win_hd.dd
mount -o ro,noatime,noexec 2
/dev/loop0 /mnt

A quick glance at */mnt* reveals the startup files and filesystem of a Windows drive. A quick glance at the *boot*. *ini* file reveals that they belong to a Windows 2000 Server (Listing 3).

Seeking with Find

Criminal investigators often use the Linux *find* command with the *--exec* or *xargs* xx options to search for files with illegal content. After creating and mounting an image, *find /mnt -type f* will give you a detailed list of files. Because this approach does not take file names with blanks or non-standard characters into account, the investigator might opt for *find /mnt -type f -print0* | *xargs -0 ls -al.*

Hash values help find identical and suspicious files on a system. You can create a hash automatically with a command such as *find /mnt -type f -print0* | *xargs -0 md5sum*; you can even compare the hashes on the fly with existing reference material. However, it makes more sense to create a file containing hashes for all files (Figure 1).

Hashes Find Duplicates

In most cases, investigators already have

hashes for files they want to find. Forensics experts compile databases with hashes of known files to help search for criminal material. If you just want to filter out Microsoft DLLs on a system you are investigating, this approach is useful.

A simple *grep* command will find any correlations between the subject of the investigation and your search targets.

The following command, from which we have removed the individual filenames, saves a list of hashes for existing files in a file called *big.txt*:

find /mnt -type f -print0 | 2
xargs -0 md5sum | awk 2
'{print \$1}' | sort -g | 2
uniq > big.txt

List	ing 1: G	etting lr	nformati	on with	fdisk	
01 ∦ fdisk -lu	win_hd.dd					
02 Disk win_hd.	dd: O MB,	0 bytes				
03 120 heads, 6 sectors of 1	3 sectors/ * 512 = 51	′track, O o 2 bytes	cylinders,	total O se	ectorsUnits =	
04 Disk identif	ier: 0x840)b840b				
05 Device System	Boot	Start	End	Blocks	Id	
06 win_hd.dd1 HPFS/NTFS	*	63	632771	9163828+	7	

Listing 2: Disktype Data

- 01 # disktype win_hd.dd
- 02 --- win_hd.dd
- O3 Regular file, size 3.021 GiB (3243663360 bytes)
- 04 DOS/MBR partition map
- O5 Partition 1: 3.017 GiB (3239760384 bytes, 6327657 sectors from 63, bootable)
- 06 Type 0x07 (HPFS/NTFS)
- 07 Windows NTLDR boot loader
- 08 NTFS file system
- 09 Volume size 3.017 GiB (3239759872 bytes, 6327656 sectors)

Listing 3: Windows Filesystem

01 # ls -l /mnt
02 Total 787024
03 -r 1 root root 150528 2003-06-19 13:05 arcldr.exe
04 -r 1 root root 163840 2003-06-19 13:05 arcsetup.exe
05 -r 1 root root 0 2007-12-02 11:59 AUTOEXEC.BAT
06 -r 1 root root 186 2007-12-02 11:43 boot.ini
07 -r 1 root root 0 2007-12-02 11:59 CONFIG.SYS
08 dr-x 1 root root 4096 2007-12-02 14:14 Dokumente und
Einstellungen
09 dr-x 1 root root 24576 2007-12-02 14:14 WINNT
10 ()
11 # cat /mnt/boot.ini
12 [boot loader]
13 timeout=30
<pre>14 default=multi(0)disk(0)rdisk(0)partition(1)\ WINNT</pre>
15 [operating systems]
<pre>16 multi(0)disk(0)rdisk(0)partition(1)\WINNT="Microsoft Windows 2000 Server" /fastdetect</pre>
17 ()

Figure 2: Standard Linux tools in action. Cat, Strings, and Grep search the Windows partition for keywords and highlight any matches they find.

The *awk* command takes the hash values in the first column; *sort -g* sorts them, and *uniq* removes duplicate entries. An investigator who has stored the desired hash values in a file called *small.txt*, can then run *grep -f small.txt big.txt* to find duplicates, and thus any matching files.

Keyword Search

Forensic investigators search confiscated systems for specific keywords.

Creating a text file with the search keys for this purpose – such as *keywords.txt* – is a good idea. For example, you could add the words *password* and *secret*.

Listing 4: Restor	ing Files
01 # ntfsundelete -u -i11137 /dev/loop0	
02 Inode Flags %age Date S	ize Filename
03	
04 11137 FN 0% 2003-06-19 5068	88 msiinst.exe
05 Undeleted 'msiinst.exe' successfully.	
O6 file msiinst.exe	
07 msiinst.exe: MS-DOS executable PE for 80386 32-bit	r MS Windows (DLL) (GUI) Intel

The command line

cat win_hd.dd | strings | 2

egrep -i --color -f keywords.txt searches the complete Windows image for the keywords *password* and *secret* and highlights them in red in the output, as you can see in Figure 2. This approach is particularly interesting if you extend the search beyond the filesystem to other areas of a hard disk, such as:

- the swap file or hibernation file,
- unallocated areas of the disk,
- file slack data
- deleted files.

To find keywords stored in the 16-bit Unicode text that the Windows NT operating systems use, you must tell the *strings* command whether to perform a little – or big – endian [5] search. The required arguments are either *-eb* or *-el*. Listing 4 uses Ntfsundelete as an example of restoring files via inode allocations.

The Sleuth Kit

The Sleuth Kit [6] is one of the leading forensic tools. You'll find The Sleuth Kit packages in the standard Debian repository, and you can use Aptitude to install it. The Sleuth Kit mainly contains three tools that extend the functionality of *ls*; the names help explain the functions:

- *fls* lists files at file system level,
- *ils* lists files on the basis of inodes,
- *dls* restores deleted files.

In addition to these files are a couple of close relatives of the standard Unix tools *cat* (*icat*) and *find* (*ifind*), and statistics tools such as *istat*. The Sleuth Kit starts by creating a list of all files with time-

		<i></i>
01 01	<pre># fls -o 63 -m "C:" -r win_hd.dd > /tmp/body</pre>	
02 02	# mactime -d -b /tmp/body	
03 03	Thu Jun 19 2003 13:05:04,16656,m,-/-rwxrwxrwx,0,0,315-128-3,C:/WINNT/system32/cdmodem.dll	
04 05	Thu Jun 19 2003 13:05:04,11792,m,-/-rwxrwxrwx,0,0,11267-128-3,C:/WINNT/ServicePackFiles/i386/partmgr.	
sys		
05 07	Thu Jun 19 2003 13:05:04,7440,m,-/-rwxrwxrwx,0,0,8093-128-3,C:/WINNT/ServicePackFiles/i386/	
06	bhp.dll	
07 09	Thu Jun 19 2003 13:05:04,1011764,m,-/-rwxrwxrwx,0,0,7102-128-3,C:/WINNT/system32/mfc42u.dl1	
08 11	Thu Jun 19 2003 13:05:04,65593,m,-/-rwxrwxrwx,0,0,6552-128-3,C:/Programme/Outlook Express/	
09	csapi3t1.dll	
10 13	Thu Jun 19 2003 13:05:04,122640,m,-/-rwxrwxrwx,0,0,858-128-3,C:/WINNT/system32/idq.dll	
11 14	Thu Jun 19 2003 13:05:04,166672,m,-/-rwxrwxrwx,0,0,7178-128-3,C:/WINNT/system32/qcap.dll	
12 15	Thu Jun 19 2003 13:05:04,65593,m,-/-rwxrwxrwx,0,0,11555-128-3,C:/WINNT/Sersystem32/i386/csapi3t1.dll	

Listing 5: File Timestamps

Investigating Windows Systems

COVER STORY

stamp information (Listing 5). If you want a neatly grouped view with a timeline of the events, you can run *mactime -b /tmp/body*. To tell the tool to look for keywords in the deleted files on an NTFS partition:

dls /dev/loop0 > unallocated

cat unallocated | strings | 2 egrep -i --color -f keywords.txt The dls command converts the unallocated space into a file, which *cat* then pipes to strings and egrep.

File Slack

File slack [7] refers to data in the unused space on a filesystem. This effect occurs when you save, for example, a 2KB file on a filesystem with 4KB blocks. All popular Windows systems just pad the unused space with random data from RAM to fill up the blocks.

Tools such as dls from The Sleuth Kit. or bmap [8], let an investigator recreate

01 # mount -o ro, noatime, noexec /dev/loop0 /mnt

data that the user sometimes didn't even knowingly store on their disk. Some investigators have used this approach to reconstruct incriminating emails.

dls with the *-s* option is particularly useful for this purpose:

dls -s /dev/loop0 > fileslack # cat fileslack | ₽ strings | egrep **2**

-i U--color -f keywords.txt

This gives the forensics expert the ability to search the file slack for keywords. According to a study [9], modern Linux filesystems are not affected by this problem; they pad the unused bytes with harmless zeros courtesy of /dev/zero.

Restore Deleted Files

ntfsundelete, from the ntfsprogs package, gives any Linux admin the ability to restore deleted files on NTFS partitions. Before you run *ntfsundelete*, you first need to release the /dev/loop0 device, typically by issuing a *umount /mnt*.

Listing 6: Browser History

Hans-Peter Merkel has been an active member of the open source forensics community for

- **N** many years. He
- trains criminal inш ł

UHD

vestigators in Germany and Tanzania, and he is one of the founders of Freioss and Linux4afrika.

Without specifying any additional options, ntfsundelete /dev/loop0 just outputs a list of all undeletable files (Figure 3). The example in Figure 3 undeletes the *msiinst.exe* file on inode 11137.

Files existing on the hard disk could provide much user information. Both Microsoft's Internet Explorer and Firefox store their history on the filesystem. The investigator needs to install two programs to analyze the information:

• Pasco [10] for Internet Explorer

• Mork.pl [11] for Mozilla Firefox Listing 6 shows a typical analysis se-

02 # find /mnt -iname "index.dat" -exec pasco '{}' ';' MODIFIED TIME ACCESS TIME 0.3 TYPE URL FILENAME DIRECTORY HTTP HEADERS 04 URL http://www.google.de/favicon.ico 06/07/2006 21:35:34 12/02/2007 05 12:14:28 favicon[1].ico NGORCTFI HTTP/1.1 200 OK Content-Type: image/x-icon 06 Content-Length: 1406 ~U:administrator 07 REDR http://msn.ivwbox.de/cgi-bin/ivw/CP/MSN01000000;?r= 12/02/2007 12:11:32 12/02/2007 12:11:32 09 URL Visited: Administrator@http://www.google.de 12/02/2007 12:14:28 10 URL Visited: Administrator@http://www.msn.de 12/02/2007 14:33:54 12/02/2007 11 14:33:54 12 # find /mnt -iname "history.dat" -exec mork.pl '{}' ';' 13 1202727704 1 http://www.linux4afrika.de/index.php?id=155&L=1 14 1202727670 1 http://www.linux4afrika.de/index.php?id=154&L=1 15 1202727641 1 http://www.linux4afrika.de/index.php?id=60&L=1 2 http://www.linux4afrika.de/ 16 1202727641 17 1202727555 1 http://n-tv.de/916916.html 18 1202726960 1 http://n-tv.de/916917.html 1 http://n-tv.de/916908.html 19 1202726892 20 1202726827 3 http://n-tv.de/ 2 21 1202726394 http://www.linux-magazine.com/ 22 1202726204 2 http://www.google.de/ 23 # find /mnt -iname "history.dat" -exec mork.pl '{}' '; | awk '{print strftime("%F,%R",\$1),\$2,\$3}' 24 2008-02-11 11:40 1 http://www.linux-magazin.com/heft_abo/ausgaben/2008/03/zwerg_am_druecker 25 2008-02-11 11:39 2 http://www.linux-magazine.com/

26 2008-02-11 11:36 2 http://www.google.com/

27 (...)

80

quence: Internet Explorer stores information for each profile in files titled *index.dat*. Running a *find* command against the file gives the investigator a list of the pages accessed in the browser.

Revealing Mozilla

Firefox stores its data in *history.dat*. The first column contains the date and time information in Unix timestamp format. The third command in Listing 6 converts this to a human-compatible format. Dumphive [12] provides an approach to making the registry on a Windows system more easily readable (Figure 4). The *dumphive /mnt/WINNT/system32/config/system system.txt* command stores the register in a separate text file, which the investigator can probe using Unix text tools.

Windows Passwords

Access to the system is interesting in its own right, but discovering the user's passwords often opens up other vectors to the investigators, as most users don't bother changing their passwords when they log in to various websites and services. On top of this, passwords give the forensics investigator the ability to log in to a virtualized image system on VMware and to investigate various system logs and files.

In addition to employing brute force attacks and tools like John the Ripper, which use dictionaries or rainbow ta-

						Shell - Konsole	_ 🗆 🗙
Session	Edit Vie	w Boo	kmarks	Settings	Help		
11123	FN	14%	2003-	06-19	305664	msihnd.dll	-
11124	FN	46%	2003-	06-19	50688	msiinst.exe	
11125	FN	33%	2003-	06-19	182198	msimain.sdb	
11126	FN	5%	2003-	06-19	847872	msimsg.dll	
11127	FN	30%	2003-	06-19	39936	msisip.dll	
11128	FN	77%	2003-	06-19	72192	sdbapiu.dll	
11130	D	0%	2007-	12-02	0	InstMsiO	
11131	FN	0%	2003-	06-19	951808	instmsi.msi	
11132	FN	66%	2003-	06-19	8337	msi.cat	
11133	FN	4%	2003-	06-19	2017792	msi.dll	
11134	FN	0%	2003-	06-19	1119	msi.inf	
11135	FN	0%	2003-	06-19	64512	msiexec.exe	
11136	FN	0%	2003-	06-19	305664	msihnd.dll	
11137	FN	100%	2003-	06-19	50688	msiinst.exe	
11138	FN	100%	2003-	06-19	182198	msimain.sdb	
11139	FN	0%	2003-	06-19	847872	msimsg.dll	
11140	FN	100%	2003-	06-19	39936	msisip.dll	
11141	FN	11%	2003-	06-19	72192	sdbapiu.dll	
11900	FN	23%	2007-	12-02	989773	CIM.REC.BAK	
11901	FR	100%	2007-	12-02	12	\$WinMgmt.CFG.BAK	
11902	FR	100%	2007-	12-02	12	\$WinMgmt.CFG.BAK	
11903	FR	100%	2007-	12-02	259	spupdsvc.inf	
.	Shell						<u>A</u> 6

Figure 3: Ntfsundelete shows deleted files that can be undeleted. The first column contains the inode number required to restore the file on the filesystem in the image file.

Figure 4: Dumphive converts the Windows Registry to cleartext. Search tools such as grep can then help you reconstruct critical settings, for example, the password hash or IP data.

bles, the Linux admin can turn to other tools such as Bkhive, Samdump2, and Ophcrack [13].

Extracting local passwords from a SAM file is not hard, as used by Windows NT-based operating systems, especially if you combine various tools. For example, John the Ripper automatically detects a Windows SAM file if you feed it to the tool. The Microsoft-specific password genus is useful here: Although Windows credentials can be up to 14 characters, the system splits them into two strings of seven characters each. This is a useful contribution by the manufacturer that makes it easier for investigators to break passwords without extreme number crunching.

As of Windows Vista, Microsoft closed this gap and replaced the Lanmanager hashes with NT hashes. XP admins can set this up manually; investigators on Linux have to run *dumphive* to check whether the Registry contains an entry

	INFO
1]	Guidance Software: http://www. guidancesoftware.com
2]	X-Ways: http://www.x-ways.net/ corporate/index-m.html
3]	Ewfacquire: https://www. uitwisselplatform.nl/projects/libewf
4]	Helix: http://www.e-fense.com/helix
5]	Endianness: http://en.wikipedia.org/ wiki/Endianness
6]	The Sleuth Kit: http://sleuthkit.org
7]	Wikipedia on file slack: http://en. wikipedia.org/wiki/File-Slack
8]	bmap: http://www. packetstormsecurity.org/linux/ security/bmap-1.0.17.tar.gz
9]	File slack analysis on Linux: http://www.woerter.at/dud/stuff/ fileslack.pdf
10]	Pasco download: http://downloads. sourceforge.net/odessa/pasco_ 20040505_1.tar.gz?modtime= 1083715200&big_mirror=0
11]	Mork.pl: http://www.jwz.org/hacks/mork.pl
12]	Dumphive: http://v4.guadalinex.org/ guadalinex-toro/pool/main/d/ dumphive/dumphive_0.0.3-1_i386. deb
13]	Ophcrack and Ophcrack Live CD: http://ophcrack.sourceforge.net
14]	Foundstone Forensic Tools: http://www.foundstone.com/us/

resources-free-tools.asp

that sets *HKEY_LOCAL_MACHINE/SYSTEM/CurrentControl-Set/Control/Lsa* to 1. If so, your only option might be to open your wallet and buy an 8.5GB dual-layer DVD with commercial LM or NT Rainbow Tables.

Like the other tools referred to in this article, Ophcrack is included in the Debian repositories. The Ophcrack utility requires rainbow tables and the hashes from the Windows machine. After completing the install, the investigator can work conveniently with the GUI and just double-click to decipher a user's password (Figure 5).

Domain Controllers

A different approach is required for Windows systems that log in to domain controllers; in this case, the credentials are not stored locally on the client. However, in many cases it is sufficient to run a network sniffer to capture the login exchange, identify the relevant data packets, save them to a file, and then feed a dump to Ophcrack. Of course, this is more complex, and you do need live access to the network.

Comparatively Simple

With the addition of a couple of extra packages, the Windows world is wide open to an investigator running Linux. If you need more of this good thing, take a look at the free forensic tools by Foundstone [14]. These tools give investigators the ability to restore cookies, long-gone entries from the Windows trash can, and many other things.

Experienced Linux users might find the shell approach refreshing, but some users will prefer to avoid the complex command-line syntax. The learning curve for Linux newcomers will likely be steeper for open source tools compared with more expensive commercial products. The winner in the usability stakes has to be the fully automated Ophcrack Live CD, which removes the need for users to type pesky shell commands and displays the local user's Windows passwords shortly after booting.

When we tested this on an XP system (SP2), the CD took just 280 seconds to discover the credentials of the five user accounts (which included up to 14 characters; see Figure 5). The live Linux version on the CD includes just the tables for alphanumeric passwords without non-standard characters. If you want more, you will have to invest in the commercial Rainbow Tables.

Load	l 🗃 I Delete	Tables	وچ Launch	Save As	🔯 Help	exit	os About	
D	USERNAME/LI	MHASH	LMpasswd1	LMpasswd2	NTpass	wd		
500	Administrato	r ,	/EMPTY/		/EMPTY	7		
501	Gast	i.	/EMPTY/		/EMPTY	1		
1000	Hilfeassistent	5		80TMBSZ				
1006	test1	1	AS2C4S		aS2C4s	8		
1007	test2	ALC: N	DF9TPIZ		dF9tPiz	Z		
1008	test3	1	VCWYWW1	P	vCwYw	w1P		
1009	test4		341BPFC	VY	341bPf	Cvy		
1010	testsz (ue)		ASQ128V	X324ASQ	asQ128	vX324a9	Sq	
1011	test5	1	BNLOP9D	DDX	bnLoPS	ddDx		

Figure 5: Double-click to crack a Windows user's password. An automated Live CD is also available.

http://www.nagioskonferenz.de

Nuremberg, September 11.–12. 2008

NETWAYS **Nagios** Konferenz

http://www.nagioskonferenz.de

Register online now!

Expect high quality presentations, workshops and a rare opportunity to meet and exchange ideas with Nagios experts while networking with professionals from various industries.

Learn practical solutions from highly qualified speakers, including Ethan Galstad the founder of Nagios.

Discuss and workshop with other industry professionals new facets of the innovative monitoring software in an open and casual arena.

Choose from a diversity of topics ranging from beginner workshops to in-depth discussions on Nagios in large environments and cluster systems.

Key Speakers:

Ethan Galstad - founder of Nagios

Ton Voon - main developer of the Nagios plugin project

Wolfgang Barth - author of the 'Nagios' book

präsentiert von

mit freundlicher Unterstützung vom http://streaming.linux-magazin.de

