
The Linux kernel

mailing list com-

prises the core of

Linux development

activities. Traffic vol-

umes are immense,

often reaching ten

thousand messages

in a given week, and

keeping up to date

with the entire scope of development

is a virtually impossible task for one

person. One of the few brave souls to

take on this task is Zack Brown.

Our regular monthly column keeps

you abreast of the latest discussions

and decisions, selected and summa-

rized by Zack. Zack has been publish-

ing a weekly online digest, the Kernel

Traffic news letter for over five years

now. Even reading Kernel Traffic alone

can be a time consuming task.

Linux Magazine now provides you

with the quintessence of Linux Kernel

activities, straight from the horse’s

mouth.

ZACK’S KERNEL NEWS
Speedier Driver Merges
Recently, Linus Torvalds reduced the

hurdles required to get code into the ker-

nel. When Linux first entered the scene,

one of Linus’s main priorities was to en-

courage contributions. To that end, he

made a point of being responsive to any

patches that came across the group, ac-

cepting many and even publishing hand-

crafted statistics about the patches re-

ceived. As contributions increased in the

late 1990s, his responsiveness dwindled,

and he became more likely to drop

patches on the floor if he didn’t like

them. Linus also began insisting that the

design and algorithms be beautiful and

that different parts of the kernel commu-

nicated in the ways natural to them.

As Linus adopted the “stable” and

“development” kernel trees, he main-

tained his insistence on good taste, but

he became even more strict during the

“stable” cycle. With the overt structuring

of kernel code submission into a hierar-

chy of maintainers and “lieutenants,”

Linus began to create a culture of adher-

ence to his coding preferences – wherein

other people who understood his tastes

could act as gatekeepers – in addition to

doing the technical work of coding and

reviewing code for bugs. With his use of

BitKeeper and the git, Linus’s culture of

“coding taste” could be further distrib-

uted to particular projects working in

isolation, in which the individual con-

tributors could review each other’s work

without it first having to be part of the

main kernel tree.

During the 2.6 tree, Linus abandoned

the somewhat uncomfortable swings be-

tween stable and development trees. He

then reinstituted a set of micro-forks for

stable development, in which the main

2.6 tree never left the development

phase and each release spawned a new

stable fork, just for bug fixes. The deci-

sion to abandon the original stable/ de-

velopment cycles marked a time of re-

thinking a variety of problems. One of

the main justifications for the change

was that the Linux distros always lay-

ered their own specialized patches on

top of the official kernel releases. This

made at least some of the efforts at sta-

bility somewhat moot, because the dis-

tributions often would use cutting-edge

patches that could not have been as

thoroughly tested and reviewed as the

official stable kernel.

Because the onus of providing true

stability would always fall on the Linux

distributions, Linus formally imposed

the obligation on them and removed it

from his primary development work.

That decision indicated a new approach

to kernel development – one that did not

abandon the need to stabilize aspects of

the kernel but that did put a higher focus

on letting contributors cut loose a bit.

Now, Linus has started accepting

driver patches in which the drivers con-

tain obvious problems. Recently, Adrian

Bunk complained about one driver

 submission that was accepted into the

kernel despite having more than 250

“checkpatch” errors and more than

2,000 warnings. In the past, these prob-

lems needed to be fixed before a driver

would be accepted into the tree. Part of

Linus’s justification for the change in

policy is the acknowledgment that code

is much more likely to be tested and

fixed if in the official tree than out of it.

Also, the assumption is that average

users rely on their distribution kernel,

rather than the official release, whereas

the kernel developers are the primary

users of the official release and can bet-

ter handle uglier, less polished drivers.

Linus points out that this new policy

targets driver code, which is by defini-

tion peripheral to the main body of code.

For kernel internals, presumably some-

what higher standards for what will be

allowed to go in still exist. Driver code

tends to stand alone and not interfere

with any other parts of the kernel.

Linus says it’s important that drivers

are well tested before going into the ker-

nel. He’s not so concerned with how the

code looks, but he does want to make

sure that it works and doesn’t break too

badly or cost users their data.

This new direction does not simplify

life for Adrian Bunk, who often sifts

through large quantities of kernel code

to remove bad and ugly wreckage. In

fact, identifying code to remove from the

kernel might become significantly more

difficult as less clean code is merged and

the barrier to entry becomes lower. On

the other hand, Greg Kroah-Hartman,

Jeff Garzik, and Arjan van de Ven felt

the new direction would improve the

kernel. With no major outcry, even

Adrian didn’t seem too concerned, and

the discussion shifted to how to fix the

“checkpatch” script independently of

this new policy.

Undoubtedly, a lot more driver code

will be going into the kernel, and the

“stable team” and distributions will con-

tinue to ensure that regular users have a

good experience. Also, there will be fur-

ther changes in how the kernel is devel-

oped in the future, adjusting for what-

ever problems emerge out of this new

approach.

KERNEL NEWS

14 ISSUE 90

014-015_kernel.indd 14 12.03.2008 15:50:15 Uhr

Now that it’s a lot easier to get code into

the kernel, Andrew Morton had some

misgivings and wanted to make sure that

everything didn’t break. His original idea

was to create a linux-next git tree,

wherein patches could pass through on

their way to Linus, but this idea quickly

changed to focus on subsystems only.

A big problem for subsystems was the

number of merge conflicts. Every time a

new merge window opened into Linus’s

tree, everyone had to scramble around

trying to resolve all the subsystem con-

flicts. Andrew’s idea involved a volun-

teer keeping a running tree of all the

subsystem code, thus helping identify

merge problems, build problems, and

possibly even run-time problems if users

could be solicited to test it. However, to

create such a linux-next tree, the merge

practices of the subsystem maintainers

must be significantly altered.

Stephen Rothwell announced the cre-

ation of a linux-next tree for subsystems,

as well as the linux-next@vger.kernel.org

mailing list for discussion about the new

tree. Stephen invited all subsystem

maintainers to send him the addresses

of their git trees or quilt series so that

he automatically can pull from all these

sources on a daily basis. Any tree with

merge conflicts would be dropped from

that day’s pull, and the maintainer of

that subsystem would be informed auto-

matically via email. Stephen also would

perform automated builds for as many

architectures as possible. Any subsys-

tems that failed to build likewise would

be dropped from the day’s tree.

Stephen was not the only volunteer:

Frank Seidel, Ann Davis, and Harvey

Harrison also volunteered to maintain

the tree. Andrew ultimately selected Ste-

phen, but Stephen hopes the other vol-

unteers are willing to help as needed.

James Bottomley also has been main-

taining a tree similar to linux-next,

which he handed off to Stephen. Andrew

knew about James’s work already, but

there were significant differences that

made it insufficient to solve the prob-

lems Andrew wanted to solve. For exam-

ple, James did not conduct automated

build tests. James’s tree also pulled in

only about 46 of the estimated 80 sub-

systems that Andrew wanted to include

in linux-next.

The linux-next idea might lead to

many more changes in the way code is

tested and submitted. Subsystem main-

tainers need to get control over how they

make patches and what parts of the ker-

nel they touch. Problems uncovered by

linux-next might end up having default

responses, such as patches being re-

jected if they haven’t been in the tree

long enough to be tested. Ultimately, it

could be that Linus’s decision to loosen

the restrictions on what code gets into

the main tree results in tighter restric-

tions by the people submitting the code,

such as setting up things like linux-next.

Clearly, the kernel development pro-

cess is continuing to undergo the major

changes inaugurated by the 2.6 release.

Watching Subsystem Merges

KERNEL NEWS

3 4 5 63

The Portland Group, Inc. is an STMicroelectronics company. CDK is a trademark or registered trademark of STMicroelectronics. PGI, Cluster Development Kit, and PGDBG are trademarks or registered trademarks of The Portland Group, Incorporated.
Other brands and names are the property of their respective owners.

® ®

2
1

PGDBG is an easy-to-use graphical parallel MPI, OpenMP and hybrid

MPI+OpenMP debugger for Linux and Windows clusters.

PGI CDK compilers and tools are available directly from

most cluster suppliers. Take a free test drive today at

www.pgroup.com/reasons

014-015_kernel.indd 15 12.03.2008 15:50:18 Uhr

