
36

Are you plagued by too many
Apache children eating up your
RAM? Do you have a bunch of

slow clients accessing your site? Do you
need to load balance between several
servers? Are you trying to separately
route static versus dynamic content? Are
you operating without a budget for new
hardware? If you answered “Yes” to any
of these questions, you probably need
Perlbal. Perlbal [1] is a single-threaded,
reverse-proxy load balancer and web
server. A plugin interface lets you extend
Perlbal in interesting ways. Although
Perlbal itself is single threaded, inter-
nally, it uses asynchronous I/ O to
achieve its phenomenal performance.

Perlbal was written by Brad Fitzpat-
rick (of LiveJournal.com and Mem-

cached fame) to solve several
of the problems that are fa-

miliar to anyone who has
maintained a large web-

site. At some point dur-
ing the life of a large
website, you will run

into one or more of these issues:
• You need to load balance all of your

content across multiple servers.
• You need to load balance only the high

traffic areas of your site.
• You need to

load balance
across several
servers with dis-
similar hardware characteristics.

• You need to offload static
image, HTML, or both

file services for dynamically rendered
web pages.

• You have slow clients.
The first four issues are easy to diagnose,
but the last issue, which some of us af-
fectionately call the “Spoon Feeding
Problem,” is harder to spot. You are
probably suffering from it a little now,
but it probably isn’t noticeable.

The spoon feeding problem originates
when none of the browsers visiting your
site can download your pages as fast as
your server can dish them out. Apache
ends up “spoon feeding” the content a
few packets at a time to the browser. Dur-
ing this time, the Apache child assigned
to the task cannot serve up content for
anyone else. You’re probably saying to
yourself, “Yes, but MY visitors are all on
broadband so I don’t have this problem.”

Think again. Broadband users can still
suffer from this problem, especially when
you factor in pages that include more
than a few images, Javascript files, or CSS
files. By default, browsers only download
a certain number of included elements
(typically four) at any one time, which
can easily cause an otherwise speedy cli-
ent to behave as a slow client. Perlbal ad-
dresses the spoon feeding problem and
many other performance challenges that
could be slowing your website.

Installing and Configuring
You have two options for installing Perl-
bal: by hand or via the CPAN shell [2].
To install Perlbal from the CPAN shell, su
to root (or use sudo) and run the com-

Let the nimble Perlbal web server

keep your traffic in balance.

BY FRANK WILES

Scaling your website with the Perlbal web server

THE JUGGLER

d
av

id
m

o
n

jo
u

, Foto
lia

PerlbalCOVER STORY

36 ISSUE 84 NOVEMBER 2007

37

mand cpan. Enter the following two
commands:

install IO::AIO
install Perlbal

This sequence will download any other
prerequisite CPAN modules along with
Perlbal itself. If you haven’t used the
CPAN shell before, note that the installa-
tion process takes you through several
configuration steps; in most cases, the
default options are sufficient.

Your other option is to install Perlbal
by hand. To do so, download the latest
tar.gz files for Perlbal, along with the
CPAN modules Danga::Socket and IO::
AIO, which Perlbal uses to implement
asynchronous I/ O. You then need to ex-
tract the archives with tar -xzf and cd to
the directories created. Then it’s a sim-
ple matter of executing in each directory:

 # perl Makefile.PL
 # make
 # make install

If you need Perlbal to support SSL,
download and install the IO::Socket::SSL
CPAN module. Perlbal, by default, is
configured via the file /etc/perlbal/perl-
bal.conf. However, you can specify an
alternative file in the --config=/path/to/
file command-line option.

One of the more interesting features of
Perlbal is that it provides a telnet man-
agement interface to itself. By connect-
ing to the management port on the local
server, you can alter Perlbal’s configura-
tion on the fly at run time. This option is
useful for doing seamless migrations or
to remove a web server from the load
balancing pool for maintenance.

The management interface is typically
configured in perlbal.conf as follows :

 CREATE SERVICE mgmt
 SET role = management
 SET listen = 127.0.0.1:60000
 ENABLE mgmt

Once you have this in your configuration
file, you can start Perlbal with:

 perlbal --daemon

You can access the management inter-
face via Telnet, so you just need to con-
nect to the proper port with:

telnet localhost 60000

The use of the loopback address
(127.0.0.1) is intentional; this restriction
ensures that the management console is
accessible only when connecting from
the server. No remote access is allowed.

Note that Perlbal does not give you a
prompt when you connect and expects
you to just start sending commands. The
lack of a prompt has tripped up many
new Perlbal users.

Perlbal as a Web Server
I’ll start off with the simplest Perlbal
setup. Assume you have an entirely
static site and you want to avoid using
Apache altogether.

For this scenario, you would configure
Perbal like this:

CREATE SERVICE web
 SET role = web_server
 SET listen = 0.0.0.0:80
 SET docroot = U
 /home/httpd/html
 SET dirindexing = 1
 SET persist_client = 1
ENABLE web

The first two parameters say that you
want to run a service that should act like
a simple web server and you want it to
bind to port 80 on all of the server’s con-
figured IP addresses. You may also re-
strict this service to a specific IP address
or a subset of the available addresses.

The docroot directive sets the base lo-
cation where Perlbal will look for your
content. The SET dirindexing directive

tell it to perform “directory indexing,” so
you can view a list of all files in the di-
rectory if no index.html exists; the last
option turns on keep-alive support.

Virtual Hosts
Often you need to host several domains
on a single IP address. To illustrate this
configuration, I’ll set up two different
domains (foo.com and bar.com) as sim-
ple web servers. That configuration is
shown in Listing 1.

The configuration in Listing 1 first cre-
ates a simple web server service for each
domain, omitting the listen directives
and persist_client options. These options
are handled by the third service, the
cleverly named virtualhosts service.

The virtualhosts service is configured
as a selector, which is Perlbal’s term for
a virtual service that maps one service
onto another. For the purposes of visual-
ization, you can think of the virtualhosts
selector service as proxying the connec-
tions to the individual foo_service and
bar_service, depending on the requested
hostname.

If you wanted to host a few websites on
one IP address and a few on another, you
would just need to set up another selector
service to listen on the alternative IP ad-
dress and map the domain names to their
respective web_server services.

Load Balancing with Perlbal
Although you might find some utility in
mimicking simple web servers, load bal-
ancing is where Perlbal really shines. I’ll
configure a slightly larger setup with
three servers. perlbal.foo.com is where

COVER STORYPerlbal

37ISSUE 84 NOVEMBER 2007

01 # Include the perlbal
virtualhost plugin

02 LOAD vhosts

03

04 CREATE SERVICE foo_service

05 SET role = web_server

06 SET docroot = /home/foo.
com/public_html

07 SET dirindexing = 1

08 ENABLE foo

09

10 CREATE SERVICE bar_service

11 SET role = web_server

12 SET docroot = /home/bar.
com/public_html

13 SET dirindexing = 1

14 ENABLE bar

15

16 CREATE SERVICE virtualhosts

17 SET listen
= 192.168.0.1:80

18 SET role = selector

19 SET plugins = vhosts

20 SET persist_client = 1

21

22 VHOST *.foo.com = foo_
service

23 VHOST *.bar.com = bar_
service

24 ENABLE virtualhosts

Listing 1: Multiple Domains on One Address

Perlbal will run; web1.foo.com and
web2.foo.com are the servers that hand
out files.

If you assume that these hostnames
map to the following IPs,

 192.168.0.1 perlbal.foo.com
 10.0.0.1 web1.foo.com
 10.0.0.2 web2.foo.com

you would create this configuration on
perlbal.foo.com as shown in Listing 2.

For this setup to work properly, you
will want to point the DNS for your do-
main to perlbal.foo.com‘s IP address
(192.168.0.1 in this example). This con-
figuration sets up a reverse_proxy ser-
vice, which will proxy and load balance
requests across both web1.foo.com and
web2.foo.com.

The verify_backend option instructs
Perlbal to ensure it is talking to an actual
web server back-end and not the server’s
TCP stack. If it determines it is stuck in,
say, web2‘s listen queue, it will resend
the request to web1.

The persist_backend option is useful if
Perlbal will be the only client connecting
to your back-end pool nodes. It will then
use HTTP keep-alives to keep an open
connection between Perlbal and the web
nodes. Perlbal can also read a list of
nodes for a particular pool from a sepa-
rate text file.

The file is checked every few seconds
and any changes are reflected. This fea-
ture is configured with:

CREATE POOL U
foo_nodes_from_file

 SET nodefile = U
 /home/foo.com/nodes.txt

Management Interface
Suppose web1.foo.com is due for some
maintenance or has suffered a hardware
failure. If you were to Telnet to the man-
agement interface and run the command

pool apache_pool REMOVE U
web1.foo.com:80

that server would then be removed from
the pool and all traffic would be routed
to web2.foo.com until you re-enable it:

pool apache_pool U
ADD web1.foo.com:80

Other useful commands for the manage-
ment interface are shown in Table 1.

Also, you can execute any of the con-
figuration commands I’ve used in other
examples on the command-line interface.
For example, you could use CREATE
POOL to set up a new pool of web servers
called new_apaches and then use:

SET balancer pool = new_apaches

Perlbal will switch to using the new
back-ends without skipping a beat.

Perlbal Plugins
Perlbal has a plugin system you can use
to write your own custom logic. Check
the Perlbal source for documentation
and examples of writing your own
plugins. For example, you could write a
plugin that redirects all static content to
a particular pool of servers on the basis
of the URL.

A friend of mine, Jacob Kaplan-Moss,
wrote a plugin for his employer that
checks for the existence of a session
cookie that would indicate whether the
requester was logged into a local news
site. If the user isn’t logged in, Perlbal
directly checks for the existence of a
cached copy of the page from mem-
cached and returns it to the client. This
essentially removes the web server from
the picture for any cached pages re-
quested by users not logged in, which
dramatically reduces server load.

The AccessControl plugin lets you allow
or deny requests on the basis of IP ad-
dress or netmask. To use this plugin, just
add the line LOAD AccessControl to the

top of your configuration file and enter
the following:

ACCESS POLICY DENY
ACCESS ALLOW netmask U
192.168.0.0/24

This would deny access by default but
allow anyone in the 192.168.0.0/ 24 net-
work. Or if you just need to block a few
bad IP addresses, you could reverse this:

ACCESS POLICY ALLOW
 ACCESS DENY IP 10.0.0.1

which would allow everyone by default,
except for the bozo at 10.0.0.1.

The other plugin you might find useful
is NotModified. This plugin will return a
304 to the client if the client sends an
“If-Modified-Since” header. By returning
the 304, Perlbal is telling the browser
that, if you have a copy in your cache,
it’s up to date.

This plugin is useful if you have a
page in which your content really
doesn’t change – for example, an image
or video archive. The use of this plugin
removes the need for Perlbal to even ask
a back-end node about the last modifica-
tion time.

Conclusion
I hope these examples reveal some ways
Perlbal might help you in your quest for
better and easier web server perfor-
mance, load balancing, and reverse
proxy service. ■

PerlbalCOVER STORY

38 ISSUE 84 NOVEMBER 2007

01 CREATE POOL apache_pool

02 POOL apache_pool ADD
10.0.0.1:80

03 POOL apache_pool ADD
10.0.0.2:80

04

05 CREATE SERVICE balancer

06 SET listen =
192.168.0.1:80

07 SET role = reverse_proxy

08 SET pool = apache_pool

09 SET persist_client = on

10 SET persist_backend = on

11 SET verify_backend = on

12 ENABLE balancer

Listing 2: Load Balancing

[1] Perlbal:
http:// www. danga. com/ perlbal/

[2] CPAN: http:// www. cpan. org

INFO

Command Description
show service List all services
enable/disable <service> Turn on/ off a partic-

ular service
show pool List all server pools
show pool <pool name> List all members of

a particular pool
shutdown Shut down Perlbal

immediately
shutdown graceful Shut down Perlbal

and disconnect all
clients

Table 1: Management
Interface Commands

