
58

If you operate outside of the main-
stream distributions or compile your
own Linux system, whether an em-

bedded Linux, a rescue system, or just a
do-it-yourself distro, you need to solve
the issue of finding the right kernel mod-
ules for your collection of hardware.
Armed with some background know-

ledge, you can use almost any program-
ming language to create a system for PCI
or USB hardware detection. In this arti-
cle, I’ll show you a method for obtaining
information about devices on your Linux
system with a Bash script. Using sysfs or
proc, you can find all the information
you need about the manufacturer,

device, and device class just by asking
the kernel.

Kernel Interfaces
Hardware detection is easiest if your ker-
nel supports sysfs. In contrast to the proc
interface, the sysfs interface does not
require you to evoke external applica-
tions or process binary files to obtain to
the vendor and devices IDs. This said,
proc will give you the same information,
which means hardware detection will
work equally well no matter which ker-
nel interface you decide to use.

sysfs uses a symbolic link with the PCI
ID for each PCI device below /sys/bus/
pci/devices; the link points to the appro-
priate device directory below /sys/
devices/pci*. Access via /proc/bus/pci/
devices is simpler, as this is where all PCI
devices for all PCI buses reside; in con-
trast, /sys/devices has a separate direc-
tory with the devices for each PCI bus.
The device directory has the data
required for hardware detection: vendor
gives you the vendor ID in hexadecimal
format, device the product ID, and class
the device class based on [3]. Listing 1 is
an excerpt from the Bash script pcidetect,
which you will find at the Linux Maga-
zine Website [1]. Lines 11 through 16 of
Listing 1 parse the files required to iden-
tify your hardware from the sysfs struc-
ture.

The device pseudo-files sorted by the
PCI controller are listed below /proc/bus/
pci. Each device file contains a full set of

01 if [-e /sys/bus/pci/devices
]; then

02 PCIDevices=/sys/bus/pci/
devices/*

03 Method="sysfs"

04 elif [-e /proc/bus/pci];
then

05 PCIDevices=/proc/bus/
pci/??/*

06 Method="proc"

07 fi

08

09 for device in $PCIDevices; do

10 if ["$Method" = "sysfs"];
then

11 read Vendor < ${device}/
vendor

12 Vendor=${Vendor:2:4}

13 read Device < ${device}/
device

14 Device=${Device:2:4}

15 read Class < ${device}/
class

16 Class=${Class:2:4}

17 elif ["$Method" = "proc"];
then

18 Vendor=`hexdump -s 0 -n 2
-e '1/2 "%04x"' $device`

19 Device=`hexdump -s 2 -n 2
-e '1/2 "%04x"' $device`

20 Class=`hexdump -s 10 -n 2
-e '1/2 "%04x"' $device`

21 fi

Listing 1: Evaluating PCI IDs

w
w

w
.p

h
oto

ca
se.d

e

DISCOVERY
SCRIPTS

Bash-based hardware detection for PCI and USB

DISCOVERY
SCRIPTS

If you need fast answers for what's inside, you can use a Bash script

to obtain an inventory of hardware on your Linux system.

BY MIRKO DÖLLE

Hardware DetectionKNOW-HOW

58 ISSUE 60 NOVEMBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

59

data in a compact format; sysfs presents
this information individually. Lines 18
through 20 in Listing 1 contain the part
of the PCI hardware detection script
from [1] that identifies the hardware
vendors, the product IDs, and the class
codes.

The PCI ID Database
In order to output the vendor and device
names in clear text, the hardware detec-
tion script references the PCI ID data-
base at [2], following the same approach
as the Linux kernel. The PCI database is
easy to parse; Listing 2 shows you the
relevant section from the hardware
detection script.

The PCIIDCMD variable contains the
command for parsing the PCI ID data-
base, which is either a simple cat against
the file or a call to wget. The database is
easy to parse; each vendor or device en-
try occupies a single line with tab-sepa-
rated fields. To process a complete line,
line 1 of Listing 2 sets the separator vari-
able, IFS, to $'\n', thus separating the for
loop at the line ends. Line 3 writes a tab-
ulator to the IFS variable in order to sep-
arate the fields, and line 4 handles the
separation.

The query in line 8, which ascertains
whether column four contains a zero, is
for quality assurance. Anyone can add to
the PCI database, and new entries are
identified by a 1 in column 4. This is

changed to a zero for verified entries.
The vendor ID for vendor entries, or the
combined vendor and device IDs for
device entries, are stored by lines 9 and
13 along with the description.

Variable Variable Names
For Bash, storing the PCI ID database is
a major challenge. Both the vendor and
the device IDs are 16-bit values, but
Bash only supports 16-bit indexes for
arrays, and unidimensional arrays. There
is no support for hashes. Variable vari-
able names are the solution to this prob-
lem. As lines 9 and 13 show, the names
can be assign as follows:

declare prefix${name}=$value

Variables for vendor
entries are assigned a v
for “vendor” as a vari-
able name prefix, fol-
lowed by the vendor ID
as a four-digit hexadeci-
mal number; device
entries start with a d,
followed by the vendor
and device IDs. This
approach gives you an
advantage over grep-
based approaches in
that you only need to
parse the PCI ID data-
base once for each
device. On the down-
side, the memory
requirement is enor-
mous at about 8 to 9
Mbytes; additionally,
the computer can take
up to a minute to run
the script. There are a
number of ways of opti-

mizing the resource demands.

Identifying Modules
Using an approach similar to the
approach we used to parse the PCI ID
database, the modules.pcimap file for the
current kernel is now parsed. The file
contains a list of all kernel modules and
the devices they support in the form of
the vendor and device IDs, and the class
code for generic drivers such as sound or
Firewire controllers. Listing 3 shows you
the code segment that parses modules.
pcimap and stores the results in variable
variable names, just like with the PCI ID
database.

The functionality provided by Listing 3
is the same as the functionality provided

01 IFS="${Newline}"

02 for z in `cat $PCIMAP`; do

03 IFS=" "

04 set -- $z

05

06 if ["$2" = "0xffffffff" -a

07 "$3" = "0xffffffff"];
then

08 id="c${6:4:4}"

09 elif ["$3" = "0xffffffff"
]; then

10 id="m${2:6}"

11 else

12 id="m${2:6}${3:6}"

13 fi

14

15 if [-z "${!id}"]; then

16 declare ${id}="$1"

17 else

18 declare
${id}="${!id}${Tab}${1}"

19 fi

20 done

Listing 3: Identifying Kernel Modules

01 IFS="${Newline}"

02 for z in `eval ${PCIIDCMD}`;
do

03 IFS="${Tab}"

04 set -- $z

05

06 case "$1" in

07 v)

08 if ["$4" = "0"]; then

09 declare v${2}=$3

10 fi

11 ;;

12 d)

13 declare d${2}=$3

14 ;;

15 esac

16 done

Listing 2: Parsing the
PCI ID database

Figure 1: Automatic hardware detection is no rocket science.

The kernel gives you all the device information you need, and a

short script will handle the process. The detailed vendor and

device information is available in the PCI ID database.

KNOW-HOWHardware Detection

59ISSUE 60 NOVEMBER 2005W W W. L I N U X- M A G A Z I N E . C O M

by Listing 2 with the exception that the
individual data files are separated by
blanks rather than tabs. The evaluation
of the class code in line 6 of Listing 3, if
the vendor and device IDs have a value
of -1, is another special function for the
script. Line 8 provides a responsible
approach to handling generic vendor
drivers.

The query in line 14 contains a con-
struction that is rarely seen, ${!id}. This
construction is the return function for
the value of a variable with a variable
name – if the curly braces are followed
by an exclamation mark, Bash interprets
any following characters up to the clos-
ing bracket as variable values that
should be used as the variable names for
the whole expression. If a value of 3c59x
is stored in the id variable, ${!id}
returns the content of the variable 3c59x;

in other words ${!id} is written as
${3c59x}.

Inside the Kernel
To discover which PCI devices lack
driver support, the hardware detection
script still needs to discover which driv-
ers have been built into the kernel. To
discover which drivers are built in, the
script uses the System.map file: each
driver adds a symbol to the kernel based
on the following pattern:

__devicestr_vendor-/device-id

Listing 4 shows the code segment that
parses System.map and stores the results
in variables with variable names. The
only major difference from Listings 2
and 3 is, the symbol entries in Listing 4
are separated by underscores and just a
1 is stored for each supported device.

Now that we have parsed and stored
the vendor and device IDs, the kernel
modules and their responsibilities, and
the devices with direct kernel support,
all we need to do is supply user output
(Figure 1) in Listing 5 (which follows on
from Listing 1).

In lines 1 through 6 of Listing 5, the
variable names are concatenated to
identify the vendor and device IDs, the
required modules, generic modules,
kernel support, and modules for each
device class; the remainder of Listing
5 is nothing special, as it just uses the
variable variable names to reference the
variables with the kernel modules or
device descriptions, and then outputs
the results. Line 10 might look slightly

more complex at first glance; this is
where the script checks if there is an
entry for the device in the regular kernel
modules, the vendor specific modules,
or whole device classes.

USB and Firewire
Hardware detection for USB devices does
not require major changes to the PCI
script. With the exception of the far
more complex formating of the USB ID
list, which makes the information more
difficult to separate, the USB detection
script from [1] simply parses different
pseudo-files from /sys and /proc. Even
Firewire hardware detection follows the
same pattern, although this article does
not offer a script specifically designed
for Firewire detection.

A simple listing of supported devices
and their kernel modules is the first step
towards gaining a better understanding
of a router or embedded Linux system.
With a few minor changes, such as
replacing the references to the PCI and
USB ID databases and automatically run-
ning modprobe instead of outputting the
kernel modules, the hardware detection
script could easily be used as a start
script to load all required kernel modules
on booting a system. ■

[1] Hardware detection scripts for PCI
and USB:
http:// www. linux-magazine. com/
Magazine/ Downloads/ 60/ detection

[2] PCI ID database:
http:// pciids. sf. net/ pci. db

[3] PCI header file with vendor, device
and class definitions:
http:// www. pcidatabase. com/ pci_c_
header. php

INFO

01 v="v${Vendor}"

02 d="d${Vendor}${Device}"

03 m="m${Vendor}${Device}"

04 g="m${Vendor}"

05 k="k${Vendor}${Device}"

06 c="c${Class}"

07

08 echo "Vendor: ${!v}${Tab}[
0x${Vendor}]"

09 echo "Device: ${!d}${T
ab}[0x${Device}]"

10 if [-n "${!m}" -o -n "${!g}"
-o -n "${!c}"]; then

11 set -- ${!m} ${!g} ${!c}

12 if ["$#" -gt "1"]; then

13 echo "Kernel modules: $*"

14 else

15 echo "Kernel module: $1"

16 fi

17 elif [-n "${!k}"]; then

18 echo "Supported by kernel"

19 else

20 echo "Not supported"

21 fi

22 echo

23 done

Listing 5: Output

01 IFS="${Newline}"

02 for z in `cat $SYSTEMMAP`; do

03 IFS="${Tab} "

04 set -- $z

05

06 if ["${3:0:12}" = "__
devicestr_"]; then

07 IFS="_"

08 set -- $3

09 declare k${4}=1

10 fi

11 done

Listing 4: Parsing
System.map

Mirko Dölle is the
head of our Hard-
ware Competence
Center, and as such,
he tests everything
he can get his
hands on – even if
the lid is nailed
down. On his leisure time, Mirko is
the developer of the Ro-Resc minia-
ture rescue distribution and the co-
author of the LinVDR distribution.
On the weekend he makes the old
alchemists’ dream come real, turn-
ing gold into lead…

T
H

E
 A

U
T

H
O

R

Hardware DetectionKNOW-HOW

60 ISSUE 60 NOVEMBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

