
65

File encryption is a popular means
for ensuring the security and pri-
vacy of file-based data. An in-

truder who breaks through your firewall
won’t be able to read your private files if
they are encrypted, right?

Actually, selective file encryption pro-
vided by utilities such as GnuPG covers
some of your tracks, but it may not cover
all of them. An intruder can still learn
about your system – and maybe even re-

construct some of your file data – by
snooping through secret files, temporary
files, configuration data, and command
histories. The /var/spool/cups directory,
for example, could yield a treasure trove
of data about files you might have
printed in the past, and tools such as the
Gnome Thumbnail Factory could be
storing an unencrypted thumbnail of
your encrypted images.

Rather than combing through every
action performed on every file to remove
any trace of the data, Linux users can
choose to encrypt data at a deeper level
using DM-Crypt. The dm-crypt kernel
module works at the block device level,
enabling users to encrypt whole parti-
tions. The process is transparent to the
application, provided the user has been
granted access to the data. DM-Crypt en-
crypts the so-called backing device (the
physical disk) and uses a virtual block
device to provide access to the cleartext
content below /dev/mapper. Users can

access this block device to set up and
mount the filesystem. This article exam-
ines the technology that underlies DM-
Crypt and the new LUKS (Linux Unified
Key Setup) management tool.

En Route to a Crypto Setup
DM-Crypt builds on a flexible layer
known as the device mapper. Device
mapper modules are configured via so-
called DM Tables – simple text files that
specify how the device mapper should
handle access to areas of the virtual
disk. The dmsetup program parses these
text files and uses ioctl() calls to pass the
details to the kernel.

The DM table format for DM-Crypt is
very clumsy for daily use. The software
expects the key to be a fixed length hexa-
decimal string. The module uses the key
to encrypt the block device data. How-
ever, storing the key permanently in a
DM table file is just like leaving your
door key hanging on the door knob. In-

If you’re serious about keeping

secrets, try hard disk encryption

with DM-Crypt and LUKS.

BY CLEMENS FRUHWIRTH

AND MARKUS SCHUSTER

Hard disk encryption with DM-Crypt, LUKS, and cryptsetup

SECRET MESSAGES

Clemens Fruhwirth is the author of
LUKS and a white paper entitled
“New Methods in Hard Disk Encryp-
tion,” which defines the underlying
theories. Clemens is also the inven-
tor of ESSIV and the implementor of
LRW-AES and EME for Linux.

Markus Schuster is a system inte-
grator with Bits & Bytes (a Bavarian
IT service provider); he refers to
himself as a free software all-
rounder and has been using LUKS
ever since its inception.

T
H

E
 A

U
T

H
O

R
S

w
w

w
.sxc.h

u

SYSADMINDM-Crypt

65ISSUE 61 DECEMBER 2005W W W. L I N U X- M A G A Z I N E . C O M

stead, the key needs to be entered when-
ever you mount the device.

Typing up to 32 hex characters from
memory may not be easy, but cryptsetup
can help. cryptsetup is a tool that gener-
ates a cryptographic key from a (more
simple) pass phrase, then passes the key
to the kernel. Figure 1 shows you the
cryptsetup environment.

Two important cryptsetup features can
be parametrized: key generation and en-
cryption. The former specifies how
cryptsetup will generate a key from a
password supplied by a user. This de-
faults to a hash algorithm, which gives
the user the freedom of selecting a pass-
word of any length. The hash will com-
press the information to provide a fixed
number of bytes. Figure 1 shows crypt-
setup using its defaults: the Ripemd-160
hash generates a 256-bit key.

Two parameters need to be selected
for the encryption process: the algorithm
and the mode. cryptsetup passes these
parameters and the derived key to the
kernel, and the DM-Crypt module coor-
dinates the procedure, using the Crypto-
API to handle encryption.

Use the Force, LUKS
Unfortunately, there is a downside to
cryptsetup. It separates the details on

what to do with a set of encrypted infor-
mation from the encrypted information.
The cryptsetup parameters are mostly
located in scripts or configuration files
which, obviously, can’t be on the en-
crypted partitions. If you lose these files
or can’t remember the settings for a por-
table disk, you will lose access to your
encrypted data. LUKS (Linux Unified
Key Setup) removes this segregation.

LUKS is a formal standard [3], imple-
mented by the cryptsetup-LUKS tool [4]
(Figure 2). The latter is a fork of the
original cryptsetup. LUKS defines a
header for DM-Crypt partitions (Figure
3); the header includes all the informa-
tion for safe key generation. As the
header is part of the encrypted partition,
the settings are always available right
where they are needed.

cryptsetup-LUKS and the original
cryptsetup also differ with respect to the
way they generate a key from a pass-
phrase (Figure 2). LUKS password man-
agement is based on three concepts: key
hierarchies, PBKDF2, and anti-forensic
information storage.

Secure Password
Management
The legacy cryptsetup application passes
the key, which is generated from the

password, directly to the kernel. The
major drawback to this approach is that
the software needs to re-encrypt all data
whenever the password is changed.
cryptsetup-LUKS introduces an addi-
tional password management layer to re-
move this need. The key hierarchy in-
serts an extra encryption layer between
the derived key and the key used by the
kernel to protect the data on the parti-
tion. Thus, the derived key only protects
the so-called master key. which encrypts
the data on the partition (Figure 2).

To change the password, cryptsetup-
LUKS decrypts the master key using the
old password, re-encrypts the key using
the new password, and overwrites the
copy of the old master key with the new
value. As the cleartext master key is not
affected by this process, the encrypted
partition data remains valid. This can
save you half a day’s work if you need
to decrypt 120GBytes; the key hierarchy
reduces the time needed to change a
password to just a few seconds.

LUKS stores the encrypted master in
the partition header without imposing a
single copy restriction. To support multi-
ple passwords for a single partition,
LUKS can store multiple, equivalent cop-
ies of the master key and encrypt each
one of them with a different string. Each

Figure 1: cryptsetup (top) prompts the user for a password and uses a

hash to create a fixed length key, which it then passes on to the ker-

nel (center). DM-Crypt (bottom) uses the key to encrypt and decrypt

data on the hard disk (or backing block device).

Cryptsetup

PasswordHash settings Encryption parameters

(User space)

DM-Crypt Interface

Block device

IV Generator

/dev/mapper/Virtual_Mapping
Crypt Engine

256 Bit

m Bit

(Kernel space)

Backing

DM Table

Hash

Ripemd 160
Modus:

IV Mode: Plain
Mode: CBC
Cipher: AES

AES-CBC Plain

Crypto API

Figure 2: cryptsetup-LUKS stores the parameters for the encrypted

partition in the backing block device partition header (top left). The

derived key protects the master key, which encrypts the data on the

partition.

Cryptsetup-LUKS

PBKDF2

Password

(User space)

DM Crypt Interface

Blockdevice

Partition header

master key

Decipher

IV Generator

/dev/mapper/Virtual_Mapping
Crypt Engine

(Kernelspace)

Backing

DM Table

AES-CBC Plain

Crypto API

Hash

Encryption
settings

Key
material

settings

256 Bit

m Bit
Backing
Block device

DM-CryptSYSADMIN

66 ISSUE 61 DECEMBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

of these passwords gives the user access
to the cleartext content on the disk. This
is particularly useful if you wish to store
a contingency password or give multiple
users separate credentials. LUKS re-
serves enough key slots in the header for
up to eight passwords (Figure 3.)

Better than a Hash
Just like cryptsetup, LUKS needs a hash
algorithm to convert an arbitrary-length
password into a fixed number of bytes.
To do so, LUKS uses the generic PBKDF2
approach (Password-Based Key Derive
Function, Version 2). PBKDF2 is a
PKCS#5 (Public Key Cryptography Stan-
dard 5) component. PKCS#5 was speci-
fied in RFC 2898 [5]. Among other
things, PBKDF2 uses salting and stretch-
ing to prevent dictionary attacks.

Users prefer short, easily-remembered
passwords. Dates of birth and pet names
are much more common than random
22-character strings. Unfortunately, you
need at least 22 characters to represent
a 128-bit key. But there are not many
people who would relish the thought of
remembering, or even typing
Sq5woq7501VUE5irAXau.a every day. A
useful derivation function satisfies both
requirements: the user can type an eas-
ily-remembered password, while the
function generates a more complex key.

An algorithm that blows up a short
password to provide 128 bits of key ma-
terial, needs to bridge the so-called en-
tropy gap, that is the gap between the
degree of randomness in the password

domain and the
key domain. Sim-
ple padding would
produce a bigger
key, but it would
be no more ran-
dom than the
password, and
thus it would be
just as easily
guessed.

Let’s imagine
that a user entered
only English
words; this would
restrict the scope
of the password
domain and not
provide enough
entropy. An at-
tacker could sim-

ply run a dictionary attack instead of
trying the 2128 keys that a 128-bit key
space provides. An English dictionary,
for example, may have less than 220
entries. This total of 220 is 108 powers
less than the full key space; a fatal re-
duction, as almost anyone could attack a
20-bit key.

To counteract this problem, PBKDF2
uses a deliberately complex function to
derive the key from the password. Al-
though this takes a while, the legitimate
user will not mind, because the opera-
tion is a once off. An attacker would
need to try 220 phrases. If each call takes
a second, this would take 12 days (220
seconds). If the user combines two
words to form a password, the attack
could take up to 30,000 years (240 sec-
onds.) This artificial barrier is referred to
as stretching. PBKDF2 uses a stretching
function that involves infinitely variable
computational effort.

Salting and Stretching
But this is not enough to stop deter-
mined attackers. An attacker could cre-
ate an enormous table containing the
input and output from the stretching
function to remove the need for number
crunching during future attacks. To pre-
vent this from working, PBKDF2 adds a
randomly selected string to the password
before generating the key. LUKS stores
the cleartext version of the string in the
partition header.

Now, the attacker needs more than
just the PBKDF2 hash for every word in

the dictionary. In fact, the attacker
would need the hashes for each word in
the dictionary and for every combination
of the appended string. The longer the
salt, the bigger the attacker’s table
would need to be. PBKDF2 pushes the
size of the table to an unimaginable
scale. The universe has fewer atoms
than the number of entries the universal
dictionary would need to contain every
single PBKDF2 combination.

With all hope of using tables dwin-
dling, attackers are forced back to num-
ber crunching. The legacy Unix pass-
word mechanism uses a similar ap-
proach, by the way: however, the salt is
a lot shorter in this case (12 bits stored
in the first two digits.)

Shredding
As we mentioned earlier, data shredding
on magnetic storage devices is very diffi-
cult to perform [2]. To effectively change
or delete passwords in the key hierarchy,
it is vital to completely destroy the old
copy of the master key. With a bit of
luck, a user might hit the right hard disk
sector after several attempts and physi-
cally overwrite the old master key. But
luck is something that users and cryp-
tographers don’t typically rely on.

The hard disk firmware actively com-
bats data shredding, as its major concern
is data safety. One way a hard disk pro-
vides more safety is by remapping bad
blocks, a simple technique for detecting
sectors that are hard to read. The firm-
ware automatically copies these sectors
to an area of the disk specially reserved
for this purpose and redirects any future
read or write operations for the original
sector to the copy.

The original sector can’t be deleted
from this point onwards, as the firmware
will redirect any write attempts to the re-
served zone. Unfortunately, this could
leave fragments of the key on the hard
disk, meaning that a data recovery ex-
pert, or a determined hacker, could still
access the fragments using modified
firmware.

This is a big problem for LUKS master
keys, which are very small in compari-
son to the sector size (128, 192 or 256
bits for AES) and thus easily fit into a
single sector. All it would take would be
for the firmware to decide to redirect this
sector to the reserved zone while the old
password was active. Neither SCSI nor

Figure 3: LUKS adds the parameters needed by cryptsetup-LUKS to

generate the key from a password entered by a user to the header of

the encrypted partition. Each key slot contains an encrypted copy of

the master key which DM-Crypt uses for data protection.

Key Slot 1

PBKDF2 salt parameter
PBKDF2 stretch parameter

Encrypted copy of master key

Partition header

UUID

LUKS version
Encryption algorithm
Encryption mode
Size of master key
Master key checksum

Header Slot 1 Slot 2 Slot 8 Encrypted data...

SYSADMINDM-Crypt

67ISSUE 61 DECEMBER 2005W W W. L I N U X- M A G A Z I N E . C O M

IDE have commands that provide access
to the original sector.

Beating the Data Recovery
Experts
The author of LUKS introduced Anti-Fo-
rensic Information Splitting (or AF Split-
ter for short) to confound recovery ex-
perts. To reduce the statistical probabil-
ity of traces of deleted files surviving on
magnetic storage media, AF Splitter ex-
pands the data by a factor of four thou-
sand. The expanded data is not redun-
dant; the complete record is always
needed to recover the master key. The
counterpart to information splitting is
merging. That is, the original data is
merged in memory where data can eas-
ily be deleted.

AF Splitter distributes the original data
(Variable x) based on the formula x =
a1 + a2 + a3 + … + a4000. The algo-
rithm generates the variables a1 through
a3999 randomly, and calculates a4000 to
make the equation balance. The Merger
adds the elements ai requiring every sin-
gle element to do so; there is no redun-
dancy. If a single element is missing, the
equation can’t be solved and x can’t be
calculated.

To shred the data, just one of the 4000
sectors involved in the process needs to
be overwritten, as the merging process
needs the whole of the expanded record.
Of course, it is a lot easier to hit one of
the 4000 sectors. The statistics show that
this works really well, as you can read at
[1]. Thanks to AF Splitter, passwords
can be changed without leaving any

traces behind. In combination with key
hierarchies and PBKDF2, this gives users
quality password management for en-
crypted DM-Crypt partitions.

Safe Data Storage
What users mainly expect of an en-
crypted disk is encryption. DM-Crypt
provides two cipher modes: ECB (Elec-
tronic Code Book) and CBC (Cipher
Block Chaining). Both modes are subject
to a few vulnerabilities, all of which are
solved by the most promising candidate
at present LRW-AES [6] [7] (LRW: Lis-
kov, Rivest, Wagner; AES: Advanced En-
cryption Standard).

ECB (Figure 4) doesn’t really deserve
the Cipher Mode label: it stores each in-
dividual block cipher result without per-
forming any additional calculations with
it. This means that for each key, clear-
text will always lead to the same cipher

text. Expressed mathematically, ECB is a
bijective function of cleartext into the ci-
pher text domain. This is a dangerous
trait if an attacker knows the cleartext
for an encrypted block due to standard-
ized filesystem headers, for example.

If the attacker knows that the first sec-
tor on the encrypted partition starts with
a series of zeros, the attacker also knows
where else zeros are encrypted. The at-
tacker does not need a key for this, but
can simply compare all the cipher text
blocks with the start of the partition. If
the attacker discovers identical blocks,
he or she knows that the decrypted con-
tent at this position on the disk com-
prises zeros. The same principle applies
to any other block of cleartext.

Hide and Seek
There are basically two methods to hide
these redundancies in the cleartext. One

Figure 4: ECB encryption mode (Electronic

Code Book) encyphers each block of clear-

text independently of all other blocks. This

means that the same input Pi to the encryp-

tion function E will result in identical output

Ci.

C4C2

EEEE

P1 P2 P3 P4

C1 C3

Figure 5: CBC encryption mode (Cipher

Block Chaining) XORs the results of one

round of encryption XORs with the following

block. This ensures that identical blocks of

cleartext will produce different cipher text

results.

IV

EE EE

C1 C2 C3 C4

P1 P2 P3 P4

To generate a watermark, the attacker
needs to create two identical sectors on
the disk. The aim is to manipulate the en-
cryption mechanism in a way that gives
two identical results
from encrypting two
sectors on the disk.
In Figure 5 you can
see the attacker can
identify all input val-
ues for Pi, but not the
IV. This is the value
used to modify the
first cleartext, as
shown in Figure 6a.

Watermarking under-
mines this by apply-
ing P1-1 rather than
P1 to the second sec-

tor. The IV for the sector two is one
greater than the IV for sector one. This
incrementation can be compensated for
by subtracting 1 from P1 (Figure 6b). If

the attacker sets all subsequent Pi just
like with the first sector, the cipher texts
are identical.

ESSIV (Encrypted Salt Sector IV) resolves
this issue. It passes
the sector number
to a function, the re-
sult of which de-
pends on the secret
key (Figure 6c). The
attacker can no lon-
ger manipulate P1
in sector two to
compensate for the
IV difference. The
attacker does not
have the key re-
quired to calculate
the IVs.

ESSIV

Figure 6a: Traditional

CBC starts encrypting

by XOR-ing the IV with

the first cleartext

block.

P1

P1 + IV
IV

EK

Figure 6b: Watermark-

ing compensates for

the changing IV by

reversing the change in

P1.

P1 + IV

P1 - 1

IV+1

EK

Figure 6c: ESSIV prevents the

would-be attacker from calculat-

ing the IV because the attacker

does not know the secret key

material K.

P1 + IV

K

IV

P1
n K

E

ESSIV

DM-CryptSYSADMIN

68 ISSUE 61 DECEMBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

approach is to add another component
to the encryption process; this compo-
nent needs to be unique for each loca-
tion on the disk, for example the hard
disk position. This would mean that
identical cleartext blocks stored at differ-
ent positions on the disk would lead to
different encryption results.

The second approach uses encryption
modes that take encrypted blocks into
account. The easiest way of implement-
ing this is to use recursion. CBC (Cipher
Block Chaining) may be simple, but it re-
mains an effective, recursive encryption
mode. It XORs the cipher text from the
last block of cipher text with the current
cleartext. CBC then encrypts the modi-
fied cleartext and applies the results to
the next block of cleartext.

Take a look at Figure 5 to see how CBC
works. Even if several contiguous blocks
of cleartext were identical, recursion
causes a kind of snowball effect. This
link means that identical cleartext blocks
are modified using different cipher text
results.

Snowball Effect
One characteristic of this kind of recur-
sion is that the first round of encryption
has an effect on all subsequent rounds.
This is not useful for hard disk encryp-
tion, where the whole of the partition
would need to be re-encrypted if the
content of the first sector changes. The
typical answer here is to view each sec-
tor as the result of a recursive function
and to process each sector indepen-
dently from the rest.

This leads to a familiar problem: two
sectors with identical cleartext result
in the same cipher text. Although sec-
tors are a lot bigger than the blocks
in a block cipher, the content can still
be identical – just imagine a user
creating multiple copies of a file, for ex-
ample. This is where the first trick ap-
plies: the sector number changes the en-
cryption by specifying the initialization
vector (IV, Figure 5). Two different modi-
fications of the first cleartext trigger dif-
ferent snowball effects and lead to differ-
ent cipher texts.

The standard variant of DM-Crypt ap-
plies the sector number directly as the
IV. This is referred to as plain IV genera-
tion. Unfortunately, this approach is vul-
nerable to watermarking attacks, where
an attacker crafts data so that he or she

can rediscover that data without know-
ing the key.

Watermarks can contain up to 5 bits of
information [1]. An attacker could add
watermarks to emails, which he or she
would then send to the victim to find out
where the victim stores the messages.
Watermarks could also be added to MP3
files, images, or other files that a suspi-
cious boss could easily send to a mem-
ber of staff. This makes attacks on a us-
er’s privacy possible. Without needing to
decrypt, the spy has access to informa-
tion about the victim’s hard disk.

The ESSIV (Encrypted Salt-Sector IV)
IV generator prevents this. Watermark-
ing assumes a simple relationship be-
tween the IVs for two contiguous sec-
tors. This is true in the case of plain; the
IV for sector n is followed by the IV n+1
for the next sector. ESSIV adds complex-
ity to the sequence, making it impossible
for attackers to calculate the sequence
without knowing at least part of the se-
cret key (see the “ESSIV” box.)

Data Whitening
You may be wondering why DM-Crypt
uses a mix of recursion and manipula-
tion based on the hard disk position
where the latter would be quite suffi-
cient on its own. There is a historic
reason for using CBC: it is a tried and
trusted approach, and the properties of

Figure 7: The LRW encryption mode does not

use recursion. It prevents ECB style attacks

(Figure 4) by adding whitening. The whiten-

ing factor is calculated by reference to the

hard disk position n and the secret key K.

Kn P

C

E

Generator
Whitening-

K

Advertisement

CBC have been investigated by many
people. The alternatives, which entirely
rely on the block number, are young in
cryptographic terms.

LRW is one encryption mode that inte-
grates the block number into the encryp-
tion routine in a simple and effective
way. First, LRW calculates a whitening
factor based on the secret key and the
block number. It then adds the whiten-
ing factor to the cleartext and encrypts
the sums, before adding the whitening
factor again (Figure 7). These two steps
are known as pre-whitening and post-
whitening. They link the cipher text with
a hard disk position to achieve different
encryption results for identical cleartext
stored on different parts of the disk

LRW removes the known vulnerabili-
ties associated with CBC while improv-
ing performance. Whereas CBC does not
scale well for multiple processors, as
each recursive step is based on the re-
sults of the previous step, LRW can use
multiple, parallel processors. The LUKS
author, who is also the co-author of this
article, Clemens Fruhwirth, has imple-
mented and tested LRW for DM-Crypt,
and the release is imminent.

Foiled by the Kernel
This said, LRW is not currently available
for DM-Crypt. Linux’ high/ low memory
management design means that kernel

modules process more than two high
memory data areas. The LRW implemen-
tation is based on an attempted generic
re-implementation of Scatterwalk (part
of Crypto-API), which should be capable
of accessing an arbitrary number of high
memory areas simultaneously. Due to
the current restriction to two memory
areas, a generic implementation would
not achieve what the author intended,
and this has led to him dropping the at-
tempt in frustration [8].

For the time being, DM-Crypt is the
most secure cipher mode implementa-
tion for CBC-ESSIV – until someone who
is not fazed by the useless and endless
discussions on the kernel mailing list [9]
steps in and develops a suitable Scatter-
walk variant. The authors of this article
would be very pleased to see this hap-
pen. The math for LRW has been com-
pleted and implemented to comply with
standards.

Installation
To use DM-Crypt, cryptsetup, and LUKS
you need a few kernel modules and a
user-space tool. The options for DM-
Crypt are hidden below Device Drivers |
Multi-device support | Device mapper
support in the kernel configuration and
below Crypt target support (Figure 8) in
the same section. Note that you need to
select Prompt for development and/or
incomplete code/drivers below Code
maturity level options, otherwise the
Crypt-Target stays hidden.

As DM-Crypt relies on Crypto-API
functions, you need to select at least
one algorithm in Cryptographic options |
Cryptographic API (Figure 9). The au-
thors recommend AES. One encryption
algorithm is all you need; the cryptsetup-
LUKS user-space tool handles the opera-
tions, such as hashing to generate the
key from the password.

Most Linux distributions set these op-
tions by default. You can enter modprobe
dm-crypt to check. The command should

01 $ dd if=/dev/zero
of=verysecret.loop bs=52428800
count=1

02 1+0 records in

03 1+0 records out

04 $ losetup /dev/loop0
verysecret.loop

05 $ cryptsetup -c aes-cbc-essiv:
sha256 -y -s 256 luksFormat /
dev/loop0

06

07 WARNING!

08 ========

09 This will overwrite data on /
dev/loop0 irrevocably.

10

11 Are you sure? (Type uppercase
yes): YES

12 Enter LUKS passphrase: ******

13 Verify passphrase: ******

14 $ cryptsetup luksOpen /dev/

loop0 verysecret

15 Enter LUKS passphrase: ******

16 key slot 0 unlocked.

17 $ mkfs.xfs /dev/mapper/
verysecret

18 [...]

19 $ mount /dev/mapper/verysecret
/mnt

20 $ umount /mnt

21 $ cryptsetup luksClose
verysecret

22 $ cryptsetup luksAddKey /dev/
loop0

23 Enter any LUKS passphrase:

24 key slot 0 unlocked.

25 Enter new passphrase for key
slot: ******

26 $ cryptsetup luksDelKey /dev/
loop0 0

27 losetup -d /dev/loop0

Listing 1: cryptsetup-LUKS

Figure 8: The device mapper is located below Device Drivers | Multi-device support (RAID and

LVM) | Device mapper support in the kernel configuration. Crypt target support is required for

DM-Crypt.

DM-CryptSYSADMIN

70 ISSUE 61 DECEMBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

work fine. DM-Crypt became an official
Linux component with kernel 2.6.4; the
ESSIV IV generator needs at least kernel
version 2.6.10.

The LUKS user-space component is
available as a download from [4]. There
are packages for Debian, Gentoo, Suse
and Red Hat; cryptsetup-luks is a stan-
dard component in Fedora 4. Users with
other distributions can follow standard
procedure, ./configure && make &&
make install to build and install, assum-
ing that Libpopt, Libgcrypt (Version
1.1.42 or later), and Libdevmapper are
installed.

cryptsetup-LUKS
The binary answers to the name of crypt-
setup and supports several actions. It
joins the ranks of tools that allow Linux
admins to assign filesystems to block de-
vices and to mount these filesystems.
Listing 1 gives you an example. To keep
this as uninvasive as possible, the dd
call in line 1 creates a 50MByte con-
tainer, which is enabled as a block de-
vice using a loop in line 4.

Initially, the most important crypt-
setup action is luksFormat, which pre-
pares the backing block device (the
loopback device in our case) for use in
the encrypted environment. This is also
the step where you need to decide on an
encryption algorithm. The formating ac-
tion needs the block device, and option-
ally a file, the content of which will be
used as the password. LUKS refers to

this file as the key file. The following
parameters are useful:
• -c specifies the algorithm and for re-

cent kernel versions, the chaining
mode and IV generator. These three
parameters must be separated by sim-
ple dashes (default: aes-cbc-plain).
The safest variant at present is
aes-cbc-essiv:sha256.

• -y tells cryptsetup to ask twice for the
password to avoid typing errors. This
parameter does not make sense in
combination with a key file.

• -s specifies the length of the encryp-
tion key.

In line 5 of Listing 1, you can see the
complete call. By typing YES in line 11,
the user confirms that existing data
might be lost. The user then sets the first
password (line 12.)

Mapping for a Filesystem
To use the block device we just pre-
pared, cryptsetup-LUKS needs to map
the physical block device to the virtual
block device. The luksOpen action takes
care of this (line 14.) If the password is
stored in a file (see luksFormat), crypt-
setup needs the -d parameter followed
by the name of the key file. In our exam-
ple, the user types a password (line 15.)

cryptsetup-LUKS automatically creates
the block device with the specified name
of verysecret below /dev/mapper/. The
mkfs.xfs call in line 17 puts an XFS file-
system on the device. The result can be
mounted as shown in line 19. Don’t for-

get to unmount before applying changes
(line 20.)

Cleaning Up
After finishing your work, it makes sense
to unmap to avoid opening up a vector
to attackers and spies. The luksClose ac-
tion takes care of this.

As mentioned previously, cryptsetup-
LUKS can manage multiple passwords
per block device. This makes it easy to
change a compromised password without
re-encrypting your data. The luksAdd
Key expects the physical block device as a
parameter (Listing 1, line 22.) After typ-
ing any current password, the tool
prompts for an additional, new password.
You can also specify a key file.

The luksDelKey action (line 26) re-
moves an existing password. It expects
the physical block device and the key slot
to be deleted as parameters. The latter is
the storage location for the key. As crypt-
setup-LUKS manages eight passwords by
default, key slots 0 through 7 are typically
all you need. The program will tell you
which key slot a password is stored in
when you call luksOpen (line 16) or
luksAddKey (line 24.) ■

Figure 9: As DM-Crypt relies on the Crypto-API for encryption, you need to select at least

one algorithm in Cryptographic options | Cryptographic API. AES is the algorithm of choice

right now.

[1] Clemens Fruhwirth, “New Methods in
Hard Disk Encryption”: http:// clemens.
endorphin. org/ publications

[2] Peter Gutmann, “Secure Deletion of
Data from Magnetic and Solid-State
Memory”: http:// www. cs. auckland. ac.
nz/ ~pgut001/ pubs/ secure_del. html

[3] Clemens Fruhwirth, “LUKS On-Disk
Format Specification”:
http:// luks. endorphin. org/
LUKS-on-disk-format. pdf

[4] LUKS Software:
http:// luks. endorphin. org

[5] RFC 2898, “PKCS #5: Password-Based
Cryptography Specification Version
2.0”: http:// rfc. net/ rfc2898. html

[6] Moses Liskov, Ronald L. Rivest und
David Wagner, “Tweakable Block Ci-
phers”: http:// www. cs. berkeley. edu/
~daw/ papers/ tweak-crypto02. pdf

[7] IEEE, “Draft Proposal for Tweakable
Narrow-block Encryption”:
http:// www. siswg. org/ docs/
LRW-AES-10-19-2004. pdf

[8] Clemens Fruhwirth, “LRW for Linux is
dead”: http:// grouper. ieee. org/ groups/
1619/ email/ msg00253. html

[9] Kernel mailing list discussion on Scat-
terwalk changes:
http:// lkml. org/ lkml/ 2005/ 1/ 24/ 54

INFO

SYSADMINDM-Crypt

71ISSUE 61 DECEMBER 2005W W W. L I N U X- M A G A Z I N E . C O M

