
76

A program that works right the
first time is uncommon enough
to make you suspicious. In test-

driven development, developers first de-
fine a test case before implementing a
feature. Inevitably, the test will fail at
first, but as soon as the feature gets im-
plemented – presto – the test suite gives
a thumbs up. This technique motivates
developers throughout the development
lifecycle; each new test adds to the test
suite and will be executed again and
again as the project emerges. Small steps
add up to a detailed test suite that no
quality management department in the
world would be capable of achieving.

In case of ongoing development and
refactoring, there is always some danger
of a change introducing undesirable side
effects. Having the ability to run hun-

dreds of test cases at no cost takes the
worries out of replacing parts of a sys-
tem. Developers can roll out new re-
leases on a regular basis and yet sleep
tight and enjoy sweet dreams. You don’t
need to be an Extreme Programming en-
thusiast to see the benefits.

Standard Suite
Thank goodness the Perl community is
well-mannered enough to add a test
suite that checks critical functions to al-
most every CPAN module. But what hap-
pens if you are developing a small script
rather than a module? Over the years I
have come to the conclusion that scripts
should only parse command line para-
meters and output help texts. I use mod-
ules for the remaining functionality. This
allows other scripts to leverage the mod-
ules. And, of course, each module has
accompanying documentation and a test
suite, right?

The TAP protocol (Test Anything Pro-
tocol) has become the de facto standard
for regression testing in Perl. TAP typi-
cally outputs a header first to indicate
the number of tests to be performed; this

A Perl toolbox for regression tests

TESTING TOOLS

is followed by a line for each test that
reads ok if the test is successful, and not
ok otherwise:

1..3
ok 1
not ok 2
ok 3

Of course, this kind of output isn’t ex-
actly easy to read if you are performing
hundreds of tests. To change this, an
overlying test harness provides a sum-
mary telling you if everything checked
out, or how many tests failed.

Listing 1 shows an example. Tradition-
ally, Perl test scripts tend to have the file
extension *.t and reside below the t di-
rectory in the module distribution. As
the test cases often check similar things,
and initiate similar actions, there are
some special test modules – such as

w
w

w
.sxc.h

u

With a test suite, you can fix bugs

and add new features without

ruining the existing codebase.

BY MICHAEL SCHILLI

Figure 1: Output from the simple.t test script.

Perl: Regression TestsPROGRAMMING

76 ISSUE 61 DECEMBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

Test::More – that simplify the
process and help to avoid
writing redundant test code.
After all, the same design
principles apply to test code
and application code.

The sample script tests the
Config::Patch CPAN module,
which patches configuration
files in a reversible way. Test::
More first sets tests => 4 to
specify that exactly four tests
will be performed. This is im-
portant: if the test suite quits
beforehand, you will want to
know all about it. Some de-
velopers water down this test
by stipulating use Test::More
qw(no_plan); while they are
busy extending the test suite,
but best practices dictate a
fixed number of tests.

The simple.t test script first
calls use_ok() (exported by
Test::More) to check if the
Config::Patch module actually
loads. The new constructor
then (hopefully) returns an
object. The following func-
tion, ok(), also from Test::
More, writes ok 2 to standard
output if the object has a true
value, and not ok 2 if not. A
second parameter, which can
be passed to ok() optionally,
sets a comment that gets
printed next to the test result.
Figure 1 shows the output
from the script.

The third test case shows
how useful it can be to use
the is() function from Test::
More rather than ok() if you
need to compare things. If

01 #!/usr/bin/perl

02 use strict;

03 use warnings;

04

 05 use Test::More tests
=> 4;

06

 07 BEGIN {

08 use_ok("Config::
Patch");

09 }

10

 11 my $p =

12 Config::Patch->new(

13 key => "foo");

14

 15 # #1 true

16 ok($p, "New object");

17

 18 # #1 eq #2

19 is($p->key,
"Waaah!",

20 "Retrieve key");

21

 22 # #1 matches #2

23 like($p->key(),
qr/^f/,

24 "Key starts with
'f'");

Listing 1: simple.t

Modul Function
Test::Simple Common test utility, includes Test::More
Test::Deep Compares deeply nested structures
Test::Pod Validates POD documentation
Test::Pod::Coverage Checks if all functions are documented
Test::NoWarnings Alerts on warnings
Test::Exception Checks if exceptions are thrown
Test::Warn Checks if warnings are correctly output
Test::Differences Graphical display of deviations
Test::LongString Checks long strings
Test::Output Catches output to STDERR/ STDOUT
Test::Output::Tie Catches output to file handles
Test::DatabaseRow Checks database query results
Test::MockModule Simulates additional modules
Test::MockObject Simulates additional objects

Table 1: Test Utilities

Advertisement

something goes wrong, the test script
not only displays the test comment and
the line number, but also the difference
between the expected and actual values.
Line 19 in Listing 1 causes an error, just
for demonstration purposes. To achieve
meaningful output with is(), you need to
pass the returned value as the first pa-
rameter, and the value you expected as
the second parameter.

The like() function used in the fourth
test case, expects a regular expression
as the second argument that the first
parameter must match instead of a
comparative value. If the Regex doesn’t
match, a detailed error message is out-
put in a similar fashion to is(). Finally,
Test::More outputs a polite “Looks like
you failed 1 tests of 4.” Being polite is

important: nobody
wants to be
scolded by a stick-
ler from QA.

The prove
script, which is
part of the Test::

Harness CPAN module, runs one or
more test scripts. The version of Test::
Harness that comes with perl-5.8 does
not include the script, so make sure to
download the latest version from CPAN.
Running prove against a test script pro-
duces the following if all tests succeed:

$ prove ./simple.t
./simple....ok
All tests successful.
Files=1, Tests=4, 0 U
wallclock secs
(0.08 cusr + 0.01 csys = U
0.09 CPU)

If you are interested in a breakdown of
the results, run prove with the -v (for
verbose) option to display the individual

ok and not ok lines along with the com-
ments. If you are running a test file from
a module distribution without installing
the module, the -b parameter is useful,
as it uses the module files that make
drops in the blib directory.

CPAN modules use make test prior to
installation to do what prove does at the
command line. The ExtUtils::MakeMaker
module, which provides this functional-
ity, messes with Perl’s library include
path, @INC, to allow the test suite to
run modules that have not been installed
so far. Newer modules come with the
Module::Build module, which provides
similar but advanced functionality.

In Depth
Besides Test::More, CPAN has innumera-
ble utility modules that facilitate the pro-
cess of creating test code without need-
ing to retype the same lines again and
again. Test::Deep, which compares
deeply nested structures, is an example.

Listing 2 shows a short test case that
calls the MP3::Info module’s get_mp3tag

Modul Function
Test::Harness Standard harness
Test::Builder Base for new test

utilities
Test::Builder::Tester Tests for new test

utilities
Test::Harness::Straps Base for a newly

developed test
harness

Devel::Cover Analysis and display
of test coverage

Test::Distribution Checks module
distributions for
completeness

Table 2: Test Analysis Tools
01 #!/usr/bin/perl

02 use warnings;

03 use strict;

04

 05 use Test::More tests => 1;

06 use Test::Deep;

07 use MP3::Info;

08

 09 my $tag =

10 get_mp3tag(

11 "Gimme_Shelter.mp3");

12

 13 cmp_deeply(

14 $tag,

15 superhashof(

16 {

17 YEAR => re(qr(^\d+$)),

18 ARTIST =>

19 re(qr(^[\s\w]+$)),

20 }

21)

22);

Listing 2: mp3.t

Figure 2: Test coverage: not all methods have been called.

Figure 3: Functions/ Methods covered in the coverme.t test script.

Perl: Regression TestsPROGRAMMING

78 ISSUE 61 DECEMBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

Advertisement

function. If the MP3 file has a proper set
of tags, the function returns a reference
to a hash, which contains a number of
keys, such as ARTIST, ALBUM, and so
on. Instead of checking if the returned
value really points to a hash, and then
walking through a number of required
hash keys, the cmp_deeply function does
this at one fell swoop.

cmp_deeply expects array or hash ref-
erences as its first two arguments, per-
forms an in-depth check, and compares
the underlying elements. The call
to cmp_deeply($ref1, $ref2) thus returns
true if $ref1 and $ref2 point to equivalent
data structures.

But that’s not all: this direct compari-
son can be manipulated using a number
of additional functions. For example, you
can check if an element in one data
structure matches an element in its
counterpart using a regular expression.
The re() function handles this. Or, if an
element in the structure contains a refer-
ence to a hash, superhashof() allows you
to specify that the first hash needs only
contain a subset of the keys in the sec-
ond hash.

Leveraging this functionality, Listing 2
checks several things at the same time:

whether $tag is a reference to a hash, for
instance, and whether the hash it points
to contains the YEAR and ARTIST keys;
additionally, Listing 2 checks whether
the values stored below the keys in the
hash match the specified regular expres-
sion: text with blanks for the ARTIST tag
and a number for YEAR. Test::Deep also
has a number of practical helper func-
tions that allow you to check simple sub-
trees of the data structures passed to
cmp_deeply without resorting to for
loops. For example, array_each() speci-
fies that a node must contain a pointer
to an array and runs a test passed to it
(re() for example) against each element
in the array.

Besides superhashof(), there is also
subhashof() to handle cases where the
reference hash contains optional ele-
ments. set() and bag() help you discover
whether an array contains a series of ele-
ments in arbitrary order, with and with-
out repetitions. The array counterparts
to the hash functions for optional ele-
ments are subbagof(), superbagof(), sub-
setof() and supersetof().

Completed Tests
Listing 3 shows the definition of a Foo
class and a test script that then runs,
calling the class constructor and using
isa_ok() to check if an object of class Foo
is actually returned.

But the test suite has a weakness: it
never runs the Foo‘s foo() method; a
nasty runtime error might just be holed
up somewhere in there, and the test
suite would never notice.

In case of smaller projects, a developer
would soon notice this lapse; for larger
projects, the Devel::Cover CPAN module
takes over the tedious work; it checks
how many possible paths the suite actu-
ally covers. Calling the Perl script, we
test as follows:

perl -MDevel::Cover coverme.t

This command creates coverage data in
a newly created cover_db directory. A
subsequent call to cover analyzes the
data and provides graphics output.
(cover is an executable script that is in-
stalled along with Devel::Cover.) If you
then point your browser to cover_db/cov-
erage.html, you get a neat overview of
the coverage data, as shown in Figure 2.
Figure 3 shows the coverage for the test

script file coverme.t; the output is avail-
able in cover_db/coverme-t.html.

Devel::Cover not only checks all the
functions and methods, but also the cov-
erage of all branches of if, else, and other
conditions. Even though it might be im-
possible to cover all branches in a large-
scale project, it is useful to know where
it might be worthwhile putting in some
extra effort to improve coverage.

Mockup
One major requirement for a test suite is
that it is quick and easy to run, without
asking the developer to install too many
extra bits and bobbles or to get involved
in configuration marathons. But many
applications reference complex data-
bases or need a working Internet con-
nection and a specific server. To work
around requirements of this kind in the
test phase, the Mock Utilities, Test::
MockModule and Test::MockObject, allow
you to spoof a very realistic Internet
server or database.

Of course, analysis tools such as Test::
Harness are designed for generic cases,
and it is up to developers to decide
whether to use the generic tools or de-
sign their own analysis tools for more
specific requirements. But to remove the
need to re-invent basic functionality
such as parsing of TAP output time and
time again, Test::Harness::Straps pro-
vides a base class, which developers can
extend for private smoke testing.

If you need more information on Perl
testing, I can recommend a really excel-
lent new book [2] that has more detailed
discussions of all the modules we have
looked at here and lots more test tips. ■

[1] Listings for this article: http:// www.
linux-magazine. com/ Magazine/
Downloads/ 61/ Perl

[2] Perl Testing, Ian Langworth & Shane
Warden, O’Reilly 2005.

INFO

01 #!/usr/bin/perl -w

02 use strict;

03

 04 package Foo;

05

 06 sub new {

07 my ($class) = @_;

08 bless {}, $class;

09 }

10

 11 sub foo {

12 print "foo!\n";

13 }

14

 15 package main;

16

 17 use Test::More tests => 1;

18

 19 my $t = Foo->new();

20 isa_ok($t, "Foo",

21 "New Foo object");

Listing 3: coverme.t

Michael Schilli works
as a Software Devel-
oper at Yahoo!,
Sunnyvale, Califor-
nia. He wrote “Perl
Power” for Addison-
Wesley and can be
contacted at mschilli@perlmeister.
com. His homepage is at
http://perlmeister.com.

T
H

E
 A

U
T

H
O

R

Perl: Regression TestsPROGRAMMING

80 ISSUE 61 DECEMBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

