
69

There is probably no other deci-
sion in a programmer’s life that is
so important and so irrevocable

as their choice of an editor. Once you opt
for Vi or Emacs, you will tend to stick to
your guns and attempt to coax the last
ounce of performance out of your favor-

ite tool. Once you decide on an editor, it
is better to learn as much as you can
about it. More effective use of an editor
not only reduces the danger of Carpal
tunnel syndrome, but also helps you
code far more quickly and with fewer
typos.

The Vim (Vi Improved) editor has a
number of advantages over its venerable
predecessor Vi. Over the years, Vim has
been extended dramatically to support
hard core programmers; it is highly con-
figurable and plug-in extensible – in fact,
Vim can be tailored to suit almost any-
one’s taste or style of working.

Vim stores a configuration file called
.vimrc below the user’s home directory;
and this is right place to store the tricks
we will be reviewing in this issue.

Linux distributions don’t always come
with the latest version of Vim, so it
makes sense to run vim --version and
check which version you have. You will
need version 6.1 or newer. If your ver-

sion is older, simply download the latest
one from [2].

Syntax Highlighting
Highlighting keywords and constructs in
program code is a great help for the sore
eyes of anyone spending lots of hours

The Vim editor has any number of tricks for helping you avoid unnecessary typing. In this month’s article, we

look at some effort-saving Vim techniques for Perl hackers. BY MICHAEL SCHILLI

Tips and tricks for easy Perl programming in Vim

LAZY TYPING

Figure 1a: A Perl code snippet in Vim, with-

out …

Figure 1b: … and with syntax highlighting

enabled.

PROGRAMMINGPerl: Tricks with Vim

69ISSUE 57 AUGUST 2005W W W. L I N U X- M A G A Z I N E . C O M

reading it. Vim has excellent syntax
highlighting for a variety of program-
ming languages and gives you amazingly
accurate results, even for a language that
is as hard to parse as Perl.
Figures 1a and 1b show how
much easier it is to recognize
code constructs with colored
highlighting.

Of course, this assumes
your Xterm supports colors.
If syntax highlighting is not
enabled by default in Vim,
the :syntax on command will
enable it. Vim evaluates the
file extension (.pl or .pm) or
even the #!/usr/bin/perl
sequence in the Shebang line to detect
Perl code and highlights the code accord-
ing to the Perl syntax. When you start
editing a new file that does not have a
Perl-specific file extension or a Shebang
line, you can tell Vim the file type explic-
itly by entering :set filetype=perl.

Shortcuts
If you always use the same programming
language, you will find yourself typing

the same sequences over and over again.
As an advocate of Log::Log4perl, I have
lost count of the number of times I have
typed use Log::Log4perl qw(:easy);. For-

tunately, Vim has helped me put
an end to that practice.

The command :abbreviate
ul4p use Log::Log4perl qw
(:easy); <RETURN> defines
ul4p as a shortcut. Whenever I
type the shortcut in text input
mode, and then press something
like the space or enter key, Vim
automatically expands the string
to give me the desired Log4perl
line. The literal <RETURN>,
which is located at the end of the

shortcut definition simulates pressing
the Enter key, and hence adds a line
break. And if you want to quit input
mode, and enter command mode, after
expanding a shortcut, simply append
<ESC>.

Another way of inserting a long text
sequence using a shortcut is to read in a
file: :abb ul4p<BACKSPACE><ESC>:r
~/.tmpl_l4p<RETURN> This
command tells Vim to replace
the ul4p shortcut with the con-
tents of the specified file.

Keyboard Macros
Macros can be used to repeat
recurring editing steps that
modify multiple non-contigu-
ous areas. Figures 2a and 2b
show three function headers to
which I would like to add
hashmarks.

The following commands
are required: first use /sub to search for
sub, then start the recorder for macro a,
draw hashmarks around the first header,
and disable the macro recorder. Then
type n to search for the next sub, and
replay the macro using @a. A list of
commands is shown in Listing 1.

If you prefer to add the hashmarks
whenever you define a new function,
you can define a keyboard shortcut for
the F key, as follows: :map F o<ESC>
43i#<ESC>yyosub {<ENTER><ESC>
Pk$i. Now, when you press the F key in
command mode, Vim inserts a function
header, switches to input mode, and
sends the cursor to the right location to
let you enter the new function’s name.

The jumble of letters in the map defi-
nition again includes typical vi-style

single-key commands for command
mode; and I’m sure that vi fans recog-
nize them. The number of hashmarks is
a matter of taste; I used 43 in the above
definition. In the case of recurring
sequences such as function headers,
map commands can save you a lot of
time and hassle. If you like, you can use
the same approach to type other com-
mon text sequences, for example, code
for collecting function parameters as in
my(...) = @_;.

Another common chore is saving the
script that you are currently working on
by pressing :w, and calling perl -c script.
pl, to check the script syntax. The
following command maps the save and
syntax check actions to the X key in
command mode: :nnoremap X :w
<Enter>:!perl -c %<Enter>.

Using the :noremap command instead
of :map ensures that “X” is not evaluated
if it occurs on the right hand side of
another map expression. Additionally,
:nnoremap only expands the definition in
command mode. The % placeholder rep-

resents the current file name.

Autoformat
If you are composing a longer
text, such as POD documenta-
tion, for example, it might take
you a while – such as seven or
eight attempts – to get into the
flow.

If you continually add and
delete passages, you may end
up with ragged looking para-
graphs that are difficult to
proofread. Word processors

such as Word work hard in the back-
ground, continually reformatting the
text, but genuine hackers have to polish
the edges themselves.

You just need four keys in Vim’s com-
mand mode to do this: {gq}. First, typ-
ing { takes you to the start of the current
paragraph, the gq command gives you a
left-justified text, and finally, } defines
where the command applies – to the end
of the paragraph in this case.

The Perl Text::Autoformat module by
grandmaster Damian Conway provides a
more elegant approach. Besides left-
justification, the module understands all
kinds of intelligent styles: for example, it
can handle bulleted lists (the lines fol-
lowing a bullet are indented in the same
way), and it handles email quotes

01 # Search for 'sub'

02 /sub

03 # Start recording

04 # macro a

05 qa

06 # Insert one line above,

07 # Back to command mode

08 O<ESC>

09 # Insert 20 hashmarks '#'

10 20i#<ESC>

11 # Copy line

12 yy

13 # Go down one line

14 # Insert copied line

15 # below.

16 jp

17 # Disable macro recorder

18 q

19 # Search for next 'sub'

20 n

21 # Replay macro 'a'

22 @a

23 # ... repeat.

Listing 1: Vim Commands

Figure 2a: The

macro editor in

record mode.

Figure 2b: The

user then simply

replays the

macro twice.

Perl: Tricks with VimPROGRAMMING

70 ISSUE 57 AUGUST 2005 W W W. L I N U X- M A G A Z I N E . C O M

indented using > or >>, or even more
angly brackets, just like a human would.

To map the formatting command to
the f key in command mode, use :map f
!Gperl -Mtext::Autoformat -e'autoformat'
<RETURN>. Later, while editing a
paragraph, simply switching to com-
mand mode and pressing the f key with
the cursor positioned somewhere in a
text passage will format the passage
automatically and correctly. Figures 3a
and 3b show raw and formatted text.

If the default line width of 72 lines is
too wide (or not wide enough) for your
liking, you can use the right option to
change this: :map f !Gperl -Mtext::
Autoformat -e'autoformat {right=>65}'
<RETURN> restricts the maximum line
width to 65 characters.

Experienced Vim users will object that
f is mapped by default in command
mode; it takes the cursor to the next
character you type, with fe taking you to
the next e in the text, for example. If you
really use this function, you can choose
another key, or even map a two-charac-
ter keyboard shortcut: for example, :map
!f ... expects you to first press ! in com-
mand mode, before you press f.

Indenting
There has been no end of discussion on
the rights and wrongs of indenting pro-
gram code. Where do you put the curly
braces? How far do you need to indent
nested code? Should you use spaces or
tabs?

As programmers all have their own
personal preferences, Vim gives you a
choice of options.

Tab based indenting is a question of
taste; many refuse to do this on princi-
ple. If you set the :set expandtab option,

Vim will convert tabs to spaces. To set
the number of spaces per tab, use :set
shiftwidth=4.

But don’t make the mistake of using
expandtab without thinking about what
you are doing, otherwise you will be in
for an unpleasant surprise when you edit
a Makefile. Make targets are followed by
tab-indented commands, and replacing
them with spaces provokes a syntax
error. To avoid this, let Vim detect the
file type, using autocmd, and set the
expandtab option for Perl programs
only:

:filetype on
:autocmd FileType U
perl :set expandtab

To track down issues like this, the :set
list command lets you view non-print-
able characters in Vim. Tabs are dis-
played as ^I and the line end character is
displayed as a blue ‘$‘. :set nolist takes
you back to normal display mode.

The shiftwidth option I mentioned
previously has another function: in
combination with the cindent option
you can use shiftwidth to save a lot
of typing. Whenever you type a condi-
tional like if($really) { and press the
return key, Vim will indent the next line
by the values defined in shiftwidth and
expandtabs. However, if you type } and
press return, Vim will automatically

push the closing brace outward, to the
start of the line. As this behavior is not
suitable for some file types, you might
like to add an auto-command that identi-
fies the file type first before setting the
option: :autocmd FileType perl :set
cindent

Sometimes you don’t realize that a
code segment needs to be indented until
you have actually finished typing it. In
this case, place the block in curly braces,
as shown in Figure 4a, switch to com-
mand mode, and press >i{, to indent
the ‘inside’ block by the value defined
by shiftwidth (Figure 4b).

The :set smarttab option adds another
feature when you use the expandtab
option: pressing backspace with the
cursor placed over the first character in
an indented line sends the line back to
the left margin, and pressing the tab key
indents the line again without using real
tabs.

Another tip: to navigate from one
curly brace to the corresponding curly
brace, simply move the cursor to the first
brace and press the percent key (%) in
command mode. This makes it easy to
find out where you are missing a curly
brace if Perl indicates a syntax error.

If you are using a US keyboard and
need to type a non-standard character
such as an umlaut (Ä for example) with
Vi, you can do so by typing Ctrl-K A : in
input mode. To find out more about typ-
ing non-standard characters, enter the
:digraphs command for a list of what is
available.

Off to a Good Start
The tmpl-Tool from [5] gets you off to a
good start when you are launching into a
new Perl script: for example, $ tmpl -p
cooltool will create a new file titled
cooltool. As you can see in Figure 5, the
skeleton script includes a few header
lines, a few typical modules, some code
to parse script options, and a manpage
display. tmpl reads a number of configu-
rable parameters like the author’s name
from the .tmpl file in the user’s home

Figure 3a: A bulleted list and part of an

email message, before …

Figure 3b: … and after formatting with Text::

Autoformat.

Figure 4a: A block with curly braces and the

cursor at the start of the block.

Figure 4b: The >i{ command indents the internal

block.

PROGRAMMINGPerl: Tricks with Vim

71ISSUE 57 AUGUST 2005W W W. L I N U X- M A G A Z I N E . C O M

directory.
The cooltool skeleton already has

two abilities: $ cooltool -v displays the
current script version, which is stored
in the $CVSVERSION variable and auto-
matically updated by CVS. Also, Pod::
Usage displays a short help file if the -h
flag is set.

Of course, budding script writers will
need to fill in the gaps, but the skeleton
takes you a long way, giving you a tem-
plate and a documentation framework,
which are indispensable for any script.

Text Completion
Vim automatically remembers words
you have written and completes them
when you press CTRL-n in text mode. If
you define a variable such as our
$GLOBAL_SUPER_VARIABLE;, and then
use the variable later on in the script,
you do not need to retype the name;

instead, you can simply type the first
few letters, press CTRL-n, and let Vim
read your thoughts.

If there is more than one way of
expanding the letters you have typed,
you can press CTRL-n multiple times to
scroll forward, and CTRL-p to scroll back
through a list of possible expansions.
This feature can save you a lot of time
and typing.

Tags
C programmers will be familiar with
the ctags program, which creates a tags
file for Vim. After ctags saw the file, a
developer only needs to place the cursor
somewhere within a function call, and
press CTRL-] in command mode, to tell
Vim to jump to the appropriate function
definition, no matter which file it is in.

To tell Vim to go to the source file for
LWP::UserAgent in Perl, for example,
if the cursor is somewhere within the
letters of LWP::UserAgent in a Perl pro-
gram, users need to do two things. First
of all, Vim needs to understand that key-
words in Perl can include colons; you
can type :set iskeyword+=: to do this.
Second, Vim needs to parse the tags file,
which provides an index for all installed
packages, as in the :set tags=/home/
mschilli/.ptags.txt command.

Pressing CTRL-] with the cursor
located in the module name will then
take you to the module source code. As
an alternative, you can supply the mod-
ule name as a command mode parame-
ter, as in :tag LWP::UserAgent. Pressing
CTRL-T while viewing the module file
takes you back to where you started.
The magic behind this functionality is
stored in the .ptags.txt tags file, which

Listing 2 creates.
Despite having a window manager,

you might need to display two files
simultaneously in a single window, and
let’s face it, Vim users are not the type of
people to use a mouse when their hands
could be busy typing.

If you type CTRL-W-], rather than
CTRL-], with the cursor located within a
keyword, the window will split into two
halves with the lower half displaying the
code for the file you are currently edit-
ing, and the top half showing you the
code for the module you referenced.
Pressing CTRL-WW toggles between the
two panels. Typing the :quit command in
the top window will close that window,
leaving the text you were editing in the
main window. Alternatively, you can
type the :only command in the lower
window to close the top window.

You can see a Vim session in Figure 6
with a test script that uses the LWP::
UserAgent module in the lower window,
and the new() method from the mod-
ule’s source code at the top.

If you are not sure how to spell the
name of a module you are looking for,
you can simply enter a regular expres-
sion. The tselect command will search
for any matching tags and give you a
list to choose from: :tselect /^LWP. This
allows users to select the number for
the required module from the menu, as
shown in Figure 7.

Give Me Tags
How do you create a ~/.ptags.txt file?
To do this, you need to read the modules
that your local Perl installation uses at
regular intervals. The script shown in
Listing 2 investigates all your @INC
paths, writes to a @ dirs array to help
it remember where it has been, and to
avoid rechecking overlapping paths.

Another option to create ppitags
would be to use the program ctags,
which, in its latest versions, handles Perl
code quite well. But calling ctags -R -f
~/.ptags.txt /usr/lib/perl5 won’t find
tags that require more elaborate parsing
of perl code than simple pattern match-
ing.

To analyze Perl source, you really need
perl, as Perl is extremely difficult to
parse. However, Adam Kennedy recently
attempted the impossible and wrote a
“Good enough” parser for Perl – in fact,
the parser is amazingly good. The PPI

Figure 5: A template for a new script called

cooltool, created by the tmpl script.

Figure 6: Vim in split-window mode: a test

script in the lower window, and the source

code of the LWP::UserAgent module, which

the script uses, at the top.

Perl: Tricks with VimPROGRAMMING

72 ISSUE 57 AUGUST 2005 W W W. L I N U X- M A G A Z I N E . C O M

module from CPAN includes PPI::
Document; its load() method reads a Perl
module, divides it up into tokens, and
stores them as nodes in a tree structure.

ppitags uses File::Find to parse the
directories in Perl’s global @INC array.
For each entry it finds, File::Find jumps
to the file_wanted function. If the entry
is a directory rather than a file, line 34
updates the %dirs hash, to discover if

the path has already been traversed. If
so, line 33 sets the $File::Find::prune
variable to 1 to tell File::Find that it can
skip the rest of the directory and any
subdirectories below it. Line 37 ignores
anything apart from Perl modules that
end with .pm.

Line 40 parses the current Perl mod-
ule. Any errors that occur at this point
are handled by line 43 (PPI is not perfect

at this time of writing), issues a warn-
ing, and drops the module it could not
handle.

After parsing a module, line 51 calls
the find() method for the PPI::Document
object, stepping through the tokens in
the Perl source and calling the docu-
ment_wanted function defined in line 56
for each token it finds.

The function checks if the token is a

001 #!/usr/bin/perl -w

002 #############################

003 # ppitags - PPI-based ctags

004 # Mike Schilli, 2005

005 # (m@perlmeister.com)

006 #############################

007 use strict;

008

 009 use PPI::Document;

010 use File::Find;

011 use Sysadm::Install qw(:all);

012 use Log::Log4perl qw(:easy);

013

 014 my $outfile =

015 "$ENV{HOME}/.ptags.txt";

016 my %dirs = ();

017 my @found = ();

018

 019 find \&file_wanted,

020 grep { $_ ne "." } @INC;

021

 022 blurt

023 join("\n", sort @found),

024 $outfile;

025

 026 #############################

027 sub file_wanted {

028 #############################

029 my $abs =

030 $File::Find::name;

031

 032 # Avoid dupe dirs

033 $File::Find::prune = 1

034 if -d and $dirs{$abs}++;

035

 036 # Only Perl modules

037 return unless /\.pm$/;

038

 039 my $d =

040 PPI::Document->load(

041 $abs);

042

 043 unless ($d) {

044 WARN "Cannot load $abs" .

045 " ($! $@)";

046 return;

047 }

048

 049 # Find packages and

050 # all named subroutines

051 $d->find(

052 \&document_wanted);

053 }

054

 055 #############################

056 sub document_wanted {

057 #############################

058 our $package;

059 my $tag;

060

 061 if(ref($_[1]) eq

062 'PPI::Statement::Package'

063) {

064 $tag =

065 $_[1]->child(2)

066 ->content();

067 $package = $tag;

068

 069 } elsif(ref($_[1]) eq

070 'PPI::Statement::Sub'

071 and $_[1]->name()) {

072 $tag =

073 "$package\::"

074 . $_[1]->name();

075 }

076

 077 return 1

078 unless defined $tag;

079

 080 push @found,

081 $tag . "\t"

082 . $File::Find::name

083 . "\t"

084 . regex_from_node(

085 $_[1]);

086

 087 return 1;

088 }

089

 090 #############################

091 sub regex_from_node {

092 #############################

093 my ($node) = @_;

094

 095 my $regex =

096 $node->content();

097

 098 $regex =~ s/\n.*//gs;

099

 100 while (

101 my $prev =

102 $node->previous_sibling()

103) {

104 last if $prev =~ /\n/;

105 $regex =

106 $prev->content()

107 . $regex;

108 $node = $prev;

109 }

110

 111 $regex =~

112 s#[/.*[\]^\$]#\\$&#g;

113

 114 return "/^$regex/";

115 }

Listing 2: ppitags

PROGRAMMINGPerl: Tricks with Vim

73ISSUE 57 AUGUST 2005W W W. L I N U X- M A G A Z I N E . C O M

PPI::Statement::Package type or PPI::
Statement::Sub type object, that is, a
package or sub definition in the Perl
code.

A package definition means a line
such as package LWP::UserAgent;, which
in turn means four tokens in the world
of PPI: package, space, the module
name, and the closing semicolon. Only
the module name is of interest for ppi-
tags, that is the third child in the node,
which was passed by $_[1] to docu-
ment_wanted(). The child() method
with the child index starting at 0, digs
out the "LWP::UserAgent" string: $_
[1]->child(2).

Line 69 finds function definitions of
the sub func { type and extracts the
function and method names to allow the
tag mechanism to identify constructs
such as LWP::Debug::trace and jump to
the location where the trace function
in the LWP::Debug module is actually
defined.

When a package definition is parsed,
ppitags stores the package name as the
current package, which is then used as a
prefix for all parsed functions. Although
this could fail with package definitions
in blocks, it makes no difference in
99.9% of all cases.

The push command in line 80 pushes
a new string to the end of the @found
array, which is made up of the required
tag (Package- or the fully qualified func-
tion name), the absolute source file-
name, and a regular expression, which
locates the package or function defini-
tion within the source file. To do so, the
function defined in line 91 ff., regex_
from_node, composes a regular expres-

sion made up of all the characters in the
line with the match from the beginning
of the line to the required token. In the
case of subroutines, $node->content()
returns both the function header and the
body. This is why line 98 removes all
lines apart from the first one, and lines
100 through 109 skip back token by
token until the beginning of the line is
reached. At the end of the while loop,
$regex will contain the source line from
the start of the line to the token. Line 114
uses this data to generate a regular
expression of the /^.../ type with an
anchor for the start of line character. The
search-and-replace operation in line 112
ensures that any non-standard charac-
ters in the Perl code will not conflict

with regex meta-characters by escaping
them with backslashes.

ppitags creates a ~/.ptags.txt file
containing a list of three-column entries
of the format: Package/ Subroutine [tab]
filename [tab] Regex, which Vim will
parse using :set tags= as described
previously, thus allowing it to jump
elegantly from keywords to the matching
source code.

It makes sense to run ppitags once
daily as a cronjob to keep ~/.ptags.txt
up to date. If you prefer, you can extend
the script to allow Vim to identify fully-
qualified our variables (such as $Text::
Wrap::columns, for example), and to
jump to their definitions within the
module source code.

Permanent Storage
Vim reads the .vimrc file in a user’s
home directory when it is launched, and
this gives users the ability to run a series
of commands before Vim actually gets
down to work. After tweaking the
defaults interactively, you will probably
want to keep your changes. Instead of
retyping the commands to add them to
your .vimrc file, you can simply type
: mkvimrc to tell Vim to store the current
settings in ~/.vimrc.

There is a sample configuration at [1]
that gives you all the settings we have
discussed in this month’s article.
Remember, saving time typing gives you
more time for thinking! ■

[1] Listings for this article:
http:// www. linux-magazine. com/
Magazine/ Downloads/ 57/ Perl

[2] The Vim project homepage:
http:// www. vim. org

[3] Steve Oualline, “vi IMproved – Vim”,
New Riders, 2001

[4] Mike’s Script Archive:
http:// perlmeister. com/ scripts

[5] tmpl Script:
http:// perlmeister. com/ scripts/ tmp

INFO

01 version 6.0

02 :map !L iuse Log::Log4perl
qw(:easy);<RETURN>Log::
Log4perl->easy_init($DEBUG);<R
ETURN><ESC>

03 :map F o<ESC>43i#<ESC>yyosub
{<ENTER><ESC>Pk$i

04 map f !Gperl -MText::
Autoformat -e'autoformat{right
=>70}'^V^M

05 set backspace=2

06 set fileencodings=utf-8,latin1

07 set formatoptions=tcql

08 set helplang=en

09 set history=50

10 set hlsearch

11 set ruler

12 set shiftwidth=4

13 :autocmd FileType perl :set
cindent

14 :autocmd FileType perl :set
expandtab

15 set smarttab

16 :nnoremap X :w<Enter>:!perl -c
%<Enter>

17 :set tags=/home/mschilli/.
ptags.txt

18 :set iskeyword+=:

Listing 3: .vimrc

Figure 7: Using regular expressions to

search for tags; entering /^LWP gives the

user a menu with numbered entries.a

Michael Schilli works
as a Software Devel-
oper at Yahoo!,
Sunnyvale, Califor-
nia. He wrote “Perl
Power” for Addison-
Wesley and can be
contacted at mschilli@perlmeister.
com. His homepage is at
http://perlmeister.com.

T
H

E
 A

U
T

H
O

R

Perl: Tricks with VimPROGRAMMING

74 ISSUE 57 AUGUST 2005 W W W. L I N U X- M A G A Z I N E . C O M

