
22

The engineers at Google have re-
leased a JavaScript(or ECMAS-
cript[1])-based API that lets users

create programs that incorporate maps
and satellite pictures of the
Earth. The Google Maps
API even lets you embed a
map-enhanced application
in a website so that it will
run from a browser with-
out any additional server-
side infrastructure. We
tried out the Google Maps
API on an example pro-
gram that calculates the
distance between points
on a map.

The Key
The Google Maps API is
available without charge
as long as users follow
some guidelines specified
by Google [2]. Users must
make any creations freely
available to the public, not
exceeding a specific num-
ber of queries each day,
and not hiding the Google

brand wherever it may be displayed. In
order to use the API, you must obtain a
key identifying yourself as a user. You
can get a key from [3] as long as you

have a Google ac-
count. Any Gmail
account will be
enough, but if even
if you are not a
Gmail user, you can
create an account.
Each key is associ-
ated with an access
URL. If you do not
have web space to
host your Google
Maps application,
but you have an
Apache server run-
ning locally, you can
register the address
http:// localhost.

You must be care-
ful when indicating
the web address, be-
cause if you enter a
misspelled or in-
complete address,
you won’t be able to

access the services offered by the Google
Maps API. It is important to write the
complete address, including ports and
directories. For instance, in order to per-
form tests on my laptop – I have an
Apache server installed on port 8080 – I
created a directory named maps. This is
where my website will be hosted. So, the
address I use to generate the key is:

http://localhost:8080/maps/

You can create as many keys as required.
Once the terms of use have been ac-
cepted, you will receive a long alphanu-
meric string, which will be stored in a
file for subsequent use.

The Flight of the Phoenix
The official documentation of the API
[4] recommends XHTML instead of ordi-
nary HTML. The reason for this is the in-
creased portability of XHTML docu-
ments. Listing 1 is an example web doc-
ument that accesses the Google Maps
API. The XHTML format is declared by
means of the DOCTYPE located at Line
1. Line 2, and Lines 5 through 9, enable
Internet Explorer to correctly display

Figure 1: The big control on the

left corresponds to a GLargeMap-

Control, the medium sized one on

the right is a GSmallMapControl,

and the small control is a

GSmallZoomControl.

We’ll show you how to incorporate interactive maps into your web

pages with the Google Maps API. BY ALBERTO PLANAS

w
w

w
.p

h
oto

ca
se.co

m

KEEPING DISTANCE
Exploring the Google Maps API

KEEPING DISTANCE

Google MapsCOVER STORY

22 ISSUE 64 MARCH 2006 W W W. L I N U X- M A G A Z I N E . C O M

23

some of the effects supplied by the
Google Maps JavaScript library (particu-
larly path lines, as explained later in this
article).

To include the JavaScript file contain-
ing the API code, use a command similar
to Line 10 in Listing 1. We have to sub-
stitute ...&key=XXXXX for the key pre-
viously generated by Google. Curiously,
all the XHTML in this first example re-
mains confined between Lines 27 and
29. It is at that point when, after loading
the HTML document, the browser must

execute the JavaScript function onLoad,
which is defined at Line 14. At Line 28
we find a <div> sized at 500 x 500 pix-
els with a map identifier, which I will
describe later in this article.

The onLoad function initializes the
map. As I have mentioned, the entire
API is written in JavaScript, and such
code will run in the user’s browser. Not
all browsers supply the same JavaScript
version and functionality, and this
causes some incompatibilities. To make
sure the program will run in the brows-

ers supported by the API, we will call
the GBrowserIsCompatible function (Line
15). If the user is using Firefox, Safari,
Opera, or IE 5.5 (or higher) we will not
have any kind of problems. In the next
line, we create an object of the GMap
type. We pass the <div> object identi-
fied by map to the constructor. The
HTML object will be used by GMap to
insert a map of the size associated with
its tag. GMap offers an interface that can
be consulted in the official documents
[3] (we will notice that there are several

01 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-strict.dtd">

02 <html xmlns="http://www.w3.org/1999/xhtml"
xmlns:v="urn:schemas-microsoft-com:vml">

03 <head>

04 <title>Ejemplo 1 - test1.html</title>

05 <style type="text/css">

06 v\:* {

07 behavior:url(#default#VML);

08 }

09 </style>

10 <script src="http://maps.google.com/maps?fil
e=api&v=1&key=XXXXX" type="text/javascript"></
script>

11 <script type="text/javascript">

12 //<![CDATA[

13 14 function onLoad() {

15 if (GBrowserIsCompatible()) {

16 var map = new GMap(document.
getElementById("map"));

17 map.addControl(new GSmallMapControl());

18 map.addControl(new GMapTypeControl());

19 map.addControl(new GScaleControl());

20 map.centerAndZoom(new GPoint(-122.1419,
37.4419), 4);

21 }

22 }

23 24 //]]>

25 </script>

26 27 <body onload="onLoad()">

28 <div id="map" style="width: 500px; height:
500px"></div>

29 </body>

30 </html>

Listing 1: test1.html

Figure 2: Map of an area in Palo Alto. Figure 3: Satellite picture of the same area.

COVER STORYGoogle Maps

23ISSUE 64 MARCH 2006W W W. L I N U X- M A G A Z I N E . C O M

constructors for this object),
but already at Line 17, we
can see that we can make
calls to the addControl()
method. We will use this
method to add several con-
trols to the map that will
allow us to modify its behav-
ior. We can scroll across the
map simply by pressing the
left mouse button and drag-
ging the pointer around, but
we can also use a component
associated with the map that
will also allow us to change
the zoom level. This compo-
nent is the one we add at
Line 17 in Listing 1, and it
corresponds to the one lo-
cated in the upper right cor-
ner of Figure 1. We can play
with the code, changing this
line to:

map.addControlU
(new GLargeMapControl());

In this way, we can include
separate position and zoom
controls. There are another
two control types we can
add: a map type selector and
a scale measurement control,
both in miles and kilometers.
Of these two, the map type

selector is the most impor-
tant, and it is included in
Line 18. There are three map
types: normal, satellite, and
hybrid (a superimposition of
one on the other). An exam-
ple of each type is shown in
Figures 2 through 4. Up to
this point, classic maps with
street names and addresses
are available only in the US,
UK, and Japan.

At Line 20 we center the
image, specifying the latitude,
longitude, and zoom level.
For this example we have
chosen the coordinates of
Palo Alto, California. We
have to be careful when indi-
cating the coordinates of the
point where we want to cen-
ter the map. First we must in-
dicate the longitude and then
the latitude. In general, we
will find the coordinates of
interesting areas in reverse
order: latitude, longitude.

After this introduction, we
will add the part of the pro-
gram that calculates dis-
tances (Listing 2).

Sphere
Any point on the surface of
Earth can be located using

Figure 4: Superimposition of the map with the satellite picture. We

can see the names of the streets on the real streets themselves.

advertisement

two numbers: latitude and longitude.
But if we just know the coordinates of
two points on the surface of a sphere, we
will not be able to calculate the distance
between them; we need another piece of
information: the radius of the sphere. If
we consider that the Earth has an aver-
age radius of about 6378.7 Km (the
Earth is not a perfect sphere), we will be
able to use spherical geometry to calcu-
late distances based on latitude and lon-
gitude values [5]. One common ap-
proach converts both latitude and longi-
tude from degrees to radians, and then
applies the formula:

d = 6378.7 * acos(sin(lat1) U
* sin(lat2) + cos(lat1) U
* cos(lat2) * cos(lon2 - lon1))

This equation does not require further
discussion, since its usage can be exam-
ined in the function calcDistance() in
Listing 2 (see page 28).

Listing 2 is subtly different from the
first example. The first difference is that,
in the call to the GMap constructor, we
are supplying an extra parameter (Line
21). This parameter is a single element
array. We use it to indicate that we only
want to display the satellite mode.

Google’s API allows you to associate
functions with a predefined list of

events. In this
way, we can alter
the behavior of
the system in re-
sponse to a mouse
click, a scroll com-
mand, or the addi-
tion of a mark.
You’ll find a com-
plete list of sup-
ported events in
the documenta-
tion. This example
requires us to cap-
ture two events.
One event is a
scroll, after which
the program must
be able to redraw
the map at the
new location. The
other event is a
mouse click on
the map, so that
we can define the
path we will use

for the distance calculation. Google’s
API allows several ways of capturing
events, but we will hook our functions
in the following way:

Gevent.addListenerU
(map, 'click', functionU
(overlay, point) {
 map.recenterOrPanToLatLngU
(point);
});

When using the addListener() method
from the GEvent class, we must indicate

the event we wish to capture and the
function that will handle it. In this case,
we are capturing the mouse click on the
map (click event). The specific function
for this event can receive two parame-
ters: the overlay or mark where we have
clicked and a point containing the exact
coordinates of the click. At Line 25 we
capture the movend event, which will be
produced each time we finish a scroll on
the map. The important event is cap-
tured at Line 35 of Listing 2. Adding our
own mouse click manager, we will en-
able the user to place several marks,
which will be stored in an array. If we
click again on one of these marks, we
must remove it both from the map and
our array. In this simple way, we will be
defining a path that we can trace with a
blue line. Our distance calculation will
be based on that path.

Both marks and lines are referenced as
overlays in the official documents of
Google Maps. Each overlay is an object
superimposed on the map. Although we
can define custom icons for the marks
(again refer to the documents), we can
also directly use the standard set pro-
vided by the API. A mark is created and
positioned on the map as follows:

var m = new GmarkerU
(new GPoint(lon1, lat1));
map.addOverlay(m);

We must create a mark located at some
specific coordinates. Next we will add it
to the map using the addOverlay()
method of the GMap class. This is the
same method we will use to draw the

Figure 5: Path of 0.77 Km drawn on the map. We can add and remove

as many red marks as we want in order to draw a different path.

Figure 6: The Google Maps website provides several example scripts.

Google MapsCOVER STORY

26 ISSUE 64 MARCH 2006 W W W. L I N U X- M A G A Z I N E . C O M

defined path, but instead of adding a
GMarker object, we will use a GPolyline:

var p = new Array;
p.push(new GPoint(lon1, lat1));
p.push(new GPoint(lon2, lat2));
...
map.addOverlayU
(new GPolyline(p));

This is just what the functions addOver-
lay() and drawLine() in our code do. An
example of a path drawn in this way is
the path shown in Figure 5. Once the
path (or a part of it) is finished, we will
be able to calculate distances using the
aforementioned formula.

The Jury
Using no more than four objects and
eight different methods, we have created
a program capable of calculating the
length of a path drawn interactively on a
map by the user from a browser. The
Google Maps API makes it easy to gener-
ate innovative and interesting applica-
tions that would otherwise require ex-

tensive programming and sound knowl-
edge of mathematics and navigation.

The API supplies another group of ob-
jects for asynchronous XML data access
through JavaScript (AJAX [6]). This set
of objects enables us to store big
amounts of terrestrial coordinates in a
database and paint them efficiently from
the client’s browser. The users of this
API have started to develop interesting
applications [8], [9], [10].

You will also find objects that allow
the generation of small signs, which are
displayed when a click (or any other pre-
defined event) is produced. These signs
are very useful for associating comments
with the map, such as a note about a
monument or an explanation of a con-
fusing intersection.

It is worth mentioning that the Google
Maps API is still at beta stage; that is, it
is subject to change even while you de-
velop applications based on it. You can
monitor the evolution of these changes,
the addition of new features, and the ex-
change of applications and experiences
from the Google Maps Discussion Group

[7]. Please do not forget to release any
applications you develop to the group so
that we can all use them as a source of
inspiration. ■

[1] ECMA-262 http:// www. ecma-interna-
tional. org/ publications/ standards/
Ecma-262. htm

[2] Terms of use http:// www. google. com/
apis/ maps/ terms. html

[3] Google Maps API
http:// www. google. com/ apis/ maps/

[4] API Documents http:// www. google.
com/ apis/ maps/ documentation/

[5] Distances http:// www. meridianworld
data. com/ Distance-Calculation. asp

[6] AJAX
http:// en. wikipedia. org/ wiki/ AJAX

[7] Google Maps Discussion Group
http:// groups-beta. google. com/ group/
Google-Maps-API

[8] Monuments in Paris http:// www. kahu
nablog. de/ gmaps. php?map=paris

[9] WikiMap http:// www. wikyblog. com/
Map/ Guest/ Home

[10] Traffic in the UK
http:// www. gtraffic. info/

INFO

advertisement

COVER STORYGoogle Maps

27ISSUE 64 MARCH 2006W W W. L I N U X- M A G A Z I N E . C O M

01 <!DOCTYPE html PUBLIC "-//
W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/
DTD/xhtml1-strict.dtd">

02 <html xmlns="http://www.
w3.org/1999/xhtml" xmlns:
v="urn:schemas-microsoft-com:
vml">

03 <head>

04 <title>Calculating
distances</title>

05 <style type="text/css">

06 v\:* {

07 behavior:
url(#default#VML);

08 }

09 </style>

10 <script src="http://maps.
google.com/maps?file=api&v=1&k
ey=XXXXX" type="text/
javascript"></script>

11 <script type="text/
javascript">

12 //<![CDATA[

14 // Points of the path
(GMaker)

15 var points = new Array;

16 // Last drawn line

17 var polyLine;

19 function onLoad() {

20 if
(GBrowserIsCompatible()) {

21 var map = new
GMap(document.
getElementById("map"), [G_
SATELLITE_TYPE]);

22 map.addControl(new
GSmallMapControl());

23 map.addControl(new
GScaleControl());

25 GEvent.
addListener(map, 'moveend',
function() {

26 var center = map.
getCenterLatLng();

27 var latLngStr = '('
+ center.y + ', ' + center.x +
')';

28 document.getElement
ById("latlong").innerHTML =
latLngStr;

29 });

31 GEvent.

addListener(map, 'click',
function(overlay, point) {

32 if (overlay) {

33
removeOverlay(map, points,
overlay);

34 } else if (point) {

35 addOverlay(map,
points, new GMarker(point));

36 }

38 polyLine =
drawLine(map, points,
polyLine);

40 var distance =
calcDistance(points);

41 document.getElement
ById("distance").innerHTML =
distance + " Km"; 42.
});

43 map.centerAndZoom(new
GPoint(-4.48333, 36.66667),
4);

44 }

46 function drawLine(map,
points, lastLine) {

47 var p = new Array();

48 for (var i = 0; i <
points.length; i++) {

49 p.push(new
GPoint(points[i].point.x,
points[i].point.y));

50 }

51 var newLine = new
GPolyline(p);

53 if (lastLine) {

54 map.
removeOverlay(lastLine);

55 }

56 map.
addOverlay(newLine);

58 return newLine;

59 }

61 function
addOverlay(map, points,
overlay) {

62 map.
addOverlay(overlay);

63 points.push(overlay);

64 }

66 function
removeOverlay(map, points,
overlay) {

67 map.
removeOverlay(overlay);

68 var oi = -1;

69 for (var i = 0; i <
points.length; i++) {

70 if (points[i] ==
overlay) {

71 oi = i;

72 break;

73 }

74 }

75 points.splice(oi, 1);

76 }

78 function
calcDistance(points) {

79 var distance = 0.0;

80 var p1 = points[0];

81 for (var i = 1; i <
points.length; i++) {

82 var p2 = points[i];

83 var lat1 =
p1.point.y * Math.PI / 180.0;

84 var lon1 =
p1.point.x * Math.PI / 180.0;

85 var lat2 =
p2.point.y * Math.PI / 180.0;

86 var lon2 =
p2.point.x * Math.PI / 180.0;

87 distance += 6378.7
* Math.acos(Math.sin(lat1) *
Math.sin(lat2) + Math.
cos(lat1) * Math.cos(lat2) *
Math.cos(lon2 - lon1));

88 p1 = p2;

89 }

91 return distance;

92 }

93 }

95 //]]>

96 </script>

98 <body onload="onLoad()">

99 <div id="map"
style="width: 500px; height:
500px"></div>

100 <div id="latlong"></div>

101 <div id="distance"></
div>

102 </body>

103 </html>

Listing 2: distance.html

Google MapsCOVER STORY

28 ISSUE 64 MARCH 2006 W W W. L I N U X- M A G A Z I N E . C O M

