
70

Lexers and parsers are everyday
tools for compiler designers and
inventors of new programming

languages. Both lexers and parsers check
arbitrarily complex expressions for syn-
tactic validity and help to translate these
complex expressions from a human-
readable format to a machine language
format.

Admittedly, having to write your own
parser is quite uncommon these days, as
data is often XML formatted, and there
are enough easy-to-use parsers capable
of handling XML data. But if you need to
analyze and evaluate formulas entered

by users, you have no alternative but to
build your own parser.

Lex Me!
If you need to evaluate an expression
such as 5+4*3, you first have to isolate
the operators and operands. As Figure 1
shows, a so-called lexer first extracts the
symbols 5, +, 4, *, and 3 from the

string. These strings, which are also re-
ferred to as tokens, are fed to the parser,
which then checks if they make mathe-
matical sense. To do so, the parser
typically creates a tree structure, which
it then uses to check if the expression
passed to it obeys the rules of a previ-
ously defined grammar. The grammar
also specifies things like operator prece-
dence (e.g., PEMDAS) or associativity
(from left to right, or vice-versa).

After ascertaining the exact meaning
of the expression, the computer can
evaluate it. The bottom part of Figure 1
shows an example of a RPN processor
(RPN: Reverse Polish Notation). The vir-
tual machine pushes either numbers or
operators onto the stack, and then it at-
tempts to reduce operand-operand-oper-
ator combinations to single values. In
Figure 1, first 4 3 * is reduced to a value
of 12, and the combination at the top of
the stack, 5 12 +, becomes 17, which is
the correct result of the original compu-
tation task 5+4*3. Of course, nothing
stops you from passing a string like
5+4*3 to the Perl eval function, which
would apply Perl’s math rules to evalu-
ate the expression. But if the expression
contains variables, operators that Perl
doesn’t understand, or even if-else con-
structs, that is, if you are handling a
miniature programming language, there
is no alternative to a full-fledged parser.

Back to the lexer: we need to ignore
blanks in the string we are evaluating;
that is, the expression 5 +4 *3 has to
produce the same symbols as 5+ 4*3.
However, lexing is not always as trivial
as the example I just gave you. The
operand could be a real number such as
1.23E40, or even a function such as
sin(x), which we would need to break
down into the tokens sin(, x, and).
CPAN has the Parse::Lex module for
complex lexing activities like this. When
you install the module, note that it needs

Lexers and parsers aren’t only for the long-bearded gurus. We’ll show you how you can build a parser for

your own custom applications. BY MICHAEL SCHILLI

Building a parser with Perl

COMPILATION ARTIST

Perl: ParserPROGRAMMING

70 ISSUE 66 MAY 2006 W W W. L I N U X- M A G A Z I N E . C O M

at least version 0.37 of the Parse::
Template module.

The mathlexer script (Listing 1)
shows an example. It expects an arbi-
trarily complex mathematical expression
as input and passes this on to the lexer;
the lexer returns the token type and
token content, which are then output

for test purposes.
The module

used by math-
lexer, MathLexer.
pm, defines the
MathLexer class,
which provides
the new construc-
tor to accept a
string for lexical
analysis (Listing
2). It then goes on
to check if the
string matches a
number of regular
expressions stored
in the @tokens
array. For each
lexeme the next

method then finds (a lexeme is a se-
quence of characters found by the lexer
from which the lexer generates a token),
the lexer returns two values.

The first element of the returned array
reference is the name of the token the
lexer has found (for example “NUM”,
“OPADD”, “RIGHTP”). The second ele-

ment then contains the actual value
found in the analyzed text (e.g. “4.27e-
14”, “+”, “)”). Figure 2 shows the test
output, which will be used as parser
fodder in a real-life situation.

Note that Parse::Lex expects regular
expressions as strings in the @token
array. This means you need to escape
backslashes as \\ if you want to avoid
symbols such as * being interpreted as
regex metacharacters. As expressions
such as ** are difficult to decipher,
MathLexer uses the slightly strange look-
ing but identical regex, "[*][*]", for the
first token definition.

A regular expression that covers the
various ways of representing real num-
bers (for example, 1.23E40, .37, 7, 1e10),
isn’t easy to formulate. Fortunately, the
CPAN module Regexp::Common has pre-
built expressions for many tasks, includ-
ing one for real numbers with all kinds
of bits and bobs. After calling use Reg-
exp::Common in the program, you can
use a global hash to leverage these
pearls of regex wisdom. The expression
for real numbers can be retrieved by

Figure 1: The lexer converts the string to tokens, and the parser

creates the parse tree. The translator converts this to Reverse

Polish Notation (RPN) and calculates the results by applying a

simple algorithm.

Lexer5+4*3

Num

5

Op

+

Num

4

Op

*

Num

3

E

+ E5

4 * 3

Translate 5 4 3 * +

17Parser

PROGRAMMINGPerl: Parser

simply writing $RE{num}{real}.
Incidentally, this expression also al-

lows an optional minus sign in front of
the real number. But due to the selected
order of lexemes detected in @tokens,
the lexer will always assume a preceding
minus sign to be an OP. However, if a
minus sign occurs in the real number’s
exponent, the lexer will take it to be a
part of the NUM lexeme.

Additionally, the skip method called in
Line 32 of Listing 2 ensures that the
lexer ignores spaces and newline charac-
ters. However, if the skip method stum-
bles across a character sequence it
doesn’t recognize (such as }), the
ERROR pseudo-token in Line 19 is used.
This token defines an error-handling
routine, which issues the die command
to tell the lexer to quit.

Syntax Check, Tokens
Please!
A parser then checks the syntactic valid-
ity of an expression. 4+*3 would be in-
valid; we want the parser to report an
error in this case and cancel processing.
In many cases, parsers not only check
the syntax of an expression, but also
handle the translation work. After all,

why not let the parser work out the re-
sults while it is poring over an arithmetic
expression.

Listing 3, AddMult.yp, defines a gram-
mar for the parser. It specifies how the
parser combines the tokens streaming
out of the lexer to predefined structures.
The first so-called production, expr: add
| mult | NUM;, specifies that the overall
task of the parser is to reduce the se-
quence of all tokens to an expr type con-
struct. If this is impossible, the tokens do
not obey the grammar; a syntax error
has occurred, and the parser quits.

Productions such as the one in Listing
3 have a so-called non-terminal on the
left. The goal for the parser is to some-
how match the lexer output with the
right side of a production and then re-
duce it to the non-terminal on its left
side. On its right side, a production can
list lexed tokens (also known as termi-

nals) but also other non-terminals,
which are then resolved by other pro-
ductions. In our example, expr can be
three things, as the alternatives sepa-
rated by the pipe sign, “|” on the right of
the colon show: add (an addition), mult
(a multiplication), or a terminal NUM, a
real number that comes from the lexer.

The non-terminals add and mult are
defined in the following productions in
AddMult.yp. add: expr OPADD expr
specifies that a non-terminal add com-
prises two expr non-terminals linked by
the ‘+‘ operator. And as we already
know, expr can contain additions, multi-
plications, or simple numbers.

The grammar file, AddMult.yp, pro-
vides an abstract description of a parser
to the Parse::Yapp module available on
CPAN. AddMult.yp is divided into three
sections separated by the %% string.
The header is at the top; it can contain

01 #############################

02 package MathLexer;

03 #############################

04 use strict;

05 use Regexp::Common;

06 use Parse::Lex;

07

 08 my @token = (

09 OPPOW => "[*][*]",

10 OPSUB => "[-]",

11 OPADD => "[+]",

12 OPMULT => "[*]",

13 OPDIV => "[/]",

14 FUNC => "[a-zA-Z]\\w*\\(",

15 ID => "[a-zA-Z]\\w*",

16 LEFTP => "\\(",

17 RIGHTP => "\\)",

18 NUM => "$RE{num}{real}",

19 ERROR => ".*",

20 sub {

21 die qq(Can't lex "$_[1]");

22 },

23);

24

 25 #############################

26 sub new {

27 #############################

28 my ($class, $string) = @_;

29

 30 my $lexer =

31 Parse::Lex->new(@token);

32 $lexer->skip("[\\s]");

33 $lexer->from($string);

34

 35 my $self =

36 { lexer => $lexer, };

37

 38 bless $self, $class;

39 }

40

 41 #############################

42 sub next {

43 #############################

44 my ($self) = @_;

45

 46 my $tok =

47 $self->{lexer}->next();

48 return undef

49 if $self->{lexer}->eoi();

50

 51 return $tok->name(),

52 $tok->text();

53 }

54

 55 1;

Listing 2: MathLexer.pm

01 #!/usr/bin/perl -w

02 use strict;

03 use MathLexer;

04

 05 my $str = U

"5*sin(x*-4.27e-14)**4*(e-pi)";

06 print " $str\n\n";

07

 08 my $lex =

09 MathLexer->new($str);

10

 11 while (1) {

12

 13 my ($tok, $val) =

14 $lex->next();

15

 16 last unless defined $tok;

17

 18 printf "%8s %s\n",

19 $tok, $val;

20 }

Listing 1: mathlexer

Perl: ParserPROGRAMMING

72 ISSUE 66 MAY 2006 W W W. L I N U X- M A G A Z I N E . C O M

parser instructions or Perl code. The
productions belonging to the grammar
are in the middle and are followed by
the footer, which can define more Perl
code, although it is empty in Listing 3.
To implement the parser, AddMult.yp is
converted to a Perl module by the yapp
utility that comes with Parse::Yapp.

The module created by this process,
AddMult.pm, implements a so-called
bottom-up parser. This kind of parser
reads a token stream from the lexer and
attempts to create the parse tree shown
in Figure 1 from the bottom upward. To
do so, it combines the units it has read
to create higher level constructs from to-
kens and lower level constructs. It con-
tinues this process, based on the rules of
the grammar, until the results match the
left side of the first production.

At each step, the parser does one of
two things: shift or reduce. Shift tells
the parser to get the next token from
the input stream and push it onto the
stack. Reduce tells the parser to combine
the terminals and non-terminals on the
stack to create higher level non-termi-
nals, based on the rules of the grammar,
thus reducing the height of the stack.
If the input queue is empty, and if the
last reduction has just left the parser
with the left side of the initial produc-
tion, the parser run has completed
successfully.

Table 1 shows how a bottom-up parser
implemented on the basis of the gram-
mar in AddMult.yp processes tokens ex-
tracted from an input string of 5+4*3
step by step.

In Step 0, the tokens [NUM, "5"],
[OPADD, "+"], [NUM, "4"], [OPMULT,
"*"], and [NUM, "3"] are available in the
input queue. In Step 1, the parser pushes
5 (which is a NUM token) onto the stack
(shift). In Step 2, it reduces the NUM ter-
minal to expr based on the third alterna-
tive of the first production in the Add-
Mult.yp grammar. The parser then pro-
cesses the [OPADD, "+"] and [NUM,
"4"] tokens from the input, shifts them
onto the stack, and then reduces 4 to
expr. But where to go from there? The
parser could reduce expr OPADD expr on
the stack to expr, following the second
production of the grammar. On the other
hand, it could fetch [OPMULT, "*"] from
the input and hope to find another expr
later to reduce expr OPMULT expr (third
production).

Conflict
This kind of problem is common; gram-
mars are often ambiguous. If we didn’t
have the traditional PEMDAS rule in
math, the parser would be completely
baffled by the shift-reduce conflict
caused by the expression “5+4*3”. The
fact that algebraic operators have prece-
dence, however, avoids the conflict. The
parser has to wait before reducing 5+4,
and needs to shift the * token onto the
stack, as * is a stronger link between the
operands than the weaker +.

If the same operators occur multiple
times in succession, as in 5-3-2, all oper-
ations have the same precedence, and
another type conflict occurs. If the parser
decides to reduce, after parsing 5-3, it
evaluates the operators from left to right,

which is exactly according to the rules of
algebra. A shift, on the other hand,
would evaluate the expression as 5-(3-2)
instead, and this expression would lead
to a surprising result of 6, instead of the
0 we might expect. The minus operator
is thus referred to as being left-associa-
tive. We need to tell the parser about
this, then it can resolve this type of con-
flict as well.

By the way, in the case of the power
operator (** in Perl), algebra dictates the
opposite approach: “4**3**2” (“4 to the
power of 3 to the power of 2”) is calcu-
lated as 4**(3**2). The power operator
is right-associative! This is easy to check
in Perl: perl -le 'print 4**3**2' gives us
262144 (4**9) and not 4096 (64**2).

Associativity and
Precedence
The yapp parser generator also notices
that the grammar is ambiguous. Here's
how the yapp generator created the
parser module AddMult.pm from the
AddMult.yp file:

$ yapp -m AddMult AddMult.yp
4 shift/reduce conflicts

The first two lines in Listing 3 resolve
the grammar confliect:

%left OPADD
%left OPMULT

01 %left OPADD

02 %left OPMULT

03

04 %%

05 expr: add | mult | NUM;

06

07 add: expr OPADD expr {

08 return $_[1] + $_[3]

09 };

10 mult: expr OPMULT expr {

11 return $_[1] * $_[3]

12 };

13 %%

Listing 3: AddMult.yp

01 #!/usr/bin/perl

02 use warnings;

03 use strict;

04

 05 use MathParser;

06 use AddMult;

07

 08 my $mp =

09 MathParser->new(

10 AddMult->new());

11

 12 for (

13 qw(5+4*3 5+4+3 5*4*3 5*4+3)

14) {

15 print "$_: ",

16 $mp->parse($_), "\n";

17 }

Listing 4: addmult

Figure 2: A mathematical expression lexed

by MathParser.pm.

PROGRAMMINGPerl: Parser

73ISSUE 66 MAY 2006W W W. L I N U X- M A G A Z I N E . C O M

These statements stipulate that both the
+ operator and the * operator are left-
associative and, more importantly, that
OPMULT has priority over OPADD, as
%left OPMULT occurs later in the parser
definition than %left OPADD.

If the parser were to define an OPMI-
NUS operation using the - operator, it
would be important to insert %left
OPMINUS before the definition of OP-
MULT. If the yp file header had an entry
for %right OPMINUS instead of %left
OPMINUS, the parser would evaluate ex-
pressions such as 5-3-2 from right to left.
And this would be disastrous, as 5-(3-2)
is 6, in contrast to 5-3-2, which gives us
a value of 0. To teach the parser to raise
numbers to powers, we would need a
right-associative power operator %right
OPPOW, after the OPMULT definition

due to the high priority of the power op-
eration and its right-associativity.

These tricks let the parser complete as
shown in Table 2.

Besides the grammar, AddMult.yp de-
fines some executable Perl code attached
to the productions. For example,

mult: expr OPMULT expr {
 return $_[1] * $_[3]
 };

stipulates that the return value of the
production (a companion to the non-ter-
minal on the left side) is the product of
the return values of the two expr expres-
sions. This means that the parser will
keep on pushing the result of the arith-
metic expression it is evaluating upward
until it reaches the start production, and

the result can be returned to the caller
by the parser. This automatically gives
the syntax checker the ability to calcu-
late formulas. Tables 1 and 2 show the
return values of the current reduction in
the “Return” column.

Note that $_[1] in the code segments
refers to the first expression on the right
side of the production (that is expr). De-
parting from the norm, the counter does
not start at 0 here, as $_[0] in Parse::
Yapp productions is always a reference
to the parser. If a production contains
multiple | separated alternatives, each
alternative can define its own block of
code. Note that a block of code only re-
fers to the alternative it is attached to.

Before we can use the parser, just one
more intermediate step: the yapp parser
interface is slightly exotic, and as we will
be using our previously defined Math-
Lexer lexer, we can define a simpler in-
terface in Listing 5. The parse() method
in MathParser simply accepts the string
to be parsed, and returns the arithmetic
result. If an error occurs, the parser goes
to the anonymous subroutine defined in
Line 35 and quits.

Listing mathparser shows a simple
application that uses MathParser.pm to
parse and evaluate four different expres-
sions:

5+4*3: 17
5+4+3: 12
5*4*3: 60
5*4+3: 23

01 # Unambiguous +/* grammar

02 %%

03 expr: expr OPADD term {

04 return $_[1] + $_[3];

05 }

06 | term {

07 return $_[1];

08 };

09

10 term: term OPMULT NUM {

11 return $_[1] * $_[3];

12 }

13 | NUM {

14 return $_[1];

15 };

16 %%

Listing 6: UnAmb.yp

01 #############################

02 package MathParser;

03 #############################

04 use MathLexer;

05 use strict;

06 use warnings;

07

 08 #############################

09 sub new {

10 #############################

11 my ($class, $parser) = @_;

12

 13 my $self =

14 { parser => $parser };

15

 16 bless $self, $class;

17 }

18

 19 #############################

20 sub parse {

21 #############################

22 my ($self, $str, $debug) =

23 @_;

24

 25 my $lexer =

26 MathLexer->new($str);

27

 28 my $result =

29 $self->{parser}->YYParse(

30

 31 yylex =>

32 sub { $lexer->next() },

33

 34 yyerror =>

35 sub { die "Error" },

36

 37 yydebug => $debug ?

38 0x1F : undef

39);

40 }

41

 42 1;

Listing 5: MathParser.pm

Step Rule Return Stack Input
0 5+4*3
1 SHIFT NUM +4*3
2 REDUCE expr: NUM 5 expr +4*3
3 SHIFT expr OPADD 4*3
4 SHIFT expr OPADD NUM *3
5 REDUCE expr: NUM 4 expr OPADD expr *3
 *Conflict: Shift/ Reduce?

Table 1: Parser Steps

Perl: ParserPROGRAMMING

74 ISSUE 66 MAY 2006 W W W. L I N U X- M A G A Z I N E . C O M

This shows that the parser honors prece-
dence rules and evaluates expressions
such as 5+4*3 and 5*4+3 correctly.

There is another way of resolving pre-
cedence conflicts. If you formulate a
grammar such as the one in Listing 6,
the higher precedence of the ‘*‘ operator
derives from the relationships between
the productions. A multiplication is first
reduced in the non-terminal term, before
any addition reductions are performed.

This approach also allows us to imple-
ment the behavior for parentheses, if
they are are allowed in the input string;
to force “(5+4)*3”, for example. To do
this, we simply redefine the term pro-

duction and add another production for
force, which jumps on any parantheses
and immediately reduces the expressions
between the brackets:

term: term OPMULT force
 { ... }
 | force
force: LEFTP expr RIGHTP
 { return $_[2]; }
 | NUM

Instead of evaluating the arithmetic ex-
pression directly, it makes sense to con-
vert it to a format that is easier to com-
pute, such as RPN. Listing 7 shows the
grammar for doing this. We have only
changed the production code segments,
which, rather than passing on calculated

values, now write numbers and opera-
tions to an array, which is passed back
as a reference, finally arriving where the
parser was called.

rpn is the calling script; as you might
expect, it produces completely different
conversions of 5+4*3 and 5+4+3:

5+4+3: [5, 4, +, 3, +,]
5+4*3: [5, 4, 3, *, +,]

With the top expression, the translator
simply processes the expression from left
to right and adds the individual values,
first adding 5 and 4, and then adding 3
to the result.

With the bottom expression, 5+4 can-
not be reduced straight away due to
PEMDAS rules. Instead, the translator
first pushes the next number, 3, onto the
RPN stack, then it performs the multipli-
cation, and only then does it add the re-
sult 12 to the 5 located lower down on
the stack.

There are numerous books on the
subject of parsing; the Dragon Book [2]
is the classic work. It may not be easy
to read, but it is indispensable. Besides
the bottom-up parser generator, Parse::
Yapp, which is based on techniques
used by the Unix tools lex, and yacc
([5]), CPAN also has a top-down parser
generator, Parse::RecDescent. Parse::Rec-
Descent. has completely different cha-
racteristics due to the differences in
parsing technology employed. [4] gives
a few examples on how to use Parse::
Yapp and Parse::RecDescent. Finally, you
can write parsers manually. This option
of manually writing the parser is particu-
larly effective with functional program-
ming, as described at [3] and [6]. ■

01 %left OPADD

02 %left OPMULT

03

04 %%

05 expr: add

06 | mult

07 | NUM { return

08 [$_[1]]; };

09

10 add: expr OPADD expr {

11 return [

12 @{$_[1]},

13 @{$_[3]},

14 $_[2]

15];

16 };

17

18 mult: expr OPMULT expr {

19 return [

20 @{$_[1]},

21 @{$_[3]},

22 $_[2]

23];

24 };

25 %%

Listing 7: RPN.yp

01 #!/usr/bin/perl

02 use strict;

03 use warnings;

04

 05 use MathParser;

06 use RPN;

07

 08 my $mp =

09 MathParser->new(

10 RPN->new());

11

 12 for my $string (

13 qw(5+4+3 5+4*3)) {

14

 15 print "$string: [";

16

 17 for(@{ $mp->parse($string)

18 }) {

19 print "$_, ";

20 }

21

 22 print "]\n";

23 }

Listing 8: rpn

[1] Listings for this article:
http:// www. linux-magazine. com/
Magazine/ Downloads/ 66/ Perl

[2] Compilers, Aho, Sethi, Ullman,
Addison Wesley, 1986

[3] Higher Order Perl, Mark Jason
Dominus, Morgan Kaufmann, 2005

[4] Pro Perl Parsing,
Christopher M. Frenz, Apress, 2005

[5] lex & yacc, Levine, Mason & Brown,
O’Reilly, 1990

[6] “Parser Combinators in Perl,” Frank
Antonsen, theperlreview.com, Sum-
mer 2005

INFO

Step Rule Return Stack Input
6 SHIFT expr OPADD expr OPMULT 3
7 SHIFT expr OPADD expr OPMULT NUM
8 REDUCE expr: NUM expr OPADD expr OPMULT expr
9 REDUCE expr: expr OPMULT expr 12 expr OPADD expr
10 REDUCE expr: expr OPADD expr 17 expr

Table 2: Final Stage of Parser Run

Perl: ParserPROGRAMMING

76 ISSUE 66 MAY 2006 W W W. L I N U X- M A G A Z I N E . C O M

