
76

Most Linux users know that a
server provides services,
whether on one machine or on

a network. The purpose of a server is to
eliminate the need to directly access
these services at the application level.
For example, an X server manages access
to and control of the video services of
the computer’s graphics chipsets, reliev-
ing user-level application developers of
the burden of programming for those
services directly.

An audio server manages access to the
capabilities and services of the installed
audio devices. These audio devices in-
clude soundcards, on-board audio chip-
sets, and any other audio hardware
(such as telephony hardware, combined
A/ V cards, television, and radio boards).

The graphic Linux desktop depends
upon X for its graphics and video ser-
vices. Thus, your favorite KDE or
GNOME applications include routines
for accessing those services through the
X application's programming interface.
Programmers can code for the hardware
via a generalized API instead of having
to directly address the hardware. Alas,
the sonic Linux desktop lacks a single
standardized solution for serving audio
resources system-wide. Instead, a variety
of solutions have appeared, including
the artsd, esd, NAS, and JACK systems.

For triggering system sounds, listening
to CD and DVD audio, and simple re-

cording, the demands on an audio server
are relatively light. Managing several
audio streams at this level requires no
sample-accurate synchronization, nor is
there a need for a highly flexible client
routing system. Most users simply want
to be able to play recorded audio with-
out blocking other audio streams. Artsd
and esd are sound servers designed to
meet these requirements for the KDE
and GNOME desktops. The Network
Audio System (NAS) is an alternative
network-friendly client/ server audio de-
livery system intended to serve as an
audio equivalent of the X server. Within
their limits, Artsd, esd, and NAS all
function effectively. However, none of
these servers provides sample-accurate
synchronized I/ O of multiple audio data
streams, nor were they designed for per-
formance within low-latency systems. If
your audio needs require these high-end
capabilities, you have ventured into the
domain of professional audio systems,
and now you need to know JACK.

Introducing JACK
Developer Paul Davis has created one
of the most remarkable pieces of open-
source audio software, the JACK Audio
Connection Kit, better known as just
JACK. JACK is specifically designed for
systems tuned for low-latency and high
demand. Professional audio recording
systems cannot afford audible delays

and dropouts (known as xruns), and
such systems are expected to support
the synchronous operation of multiple
clients in a low-latency environment.

JACK comes with features such as:
• support for any ALSA-compatible

sound device
• support for a variety of audio system

back-ends (ALSA, OSS/ Linux, Port-
Audio, CoreAudio)

• free connectivity between clients –
without delays or dropouts

• support for a master transport control
system

JACK’s primary task is the management
of multiple audio data streams, coming
from and going into a variety of appli-
cations with synchronized I/ O. JACK
requires an audio system – it is not a
replacement for an audio system such
as ALSA or OSS/ Linux. JACK does not
supply soundcard drivers, nor does it
access hardware directly; instead it de-
pends on a low-level audio layer to han-
dle that communication, which in Linux
is either ALSA or OSS. JACK doesn’t care
about the underlying hardware, it simply
wants to manage the streams coming
into and out of your devices.

Building and Installing
JACK
JACK is available as a basic package
in the AGNULA/ Demudi and Planet
CCRMA audio-optimized systems. A

w
w

w
.p

h
oto

ca
se.co

m

The JACK audio server offers a professional sound alternative for the

Linux desktop. BY DAVE PHILLIPS

KNOWING JACK
Exploring the JACK sound server system

KNOWING JACK

JACK audio serverLINUXUSER

76 ISSUE 67 JUNE 2006 W W W. L I N U X- M A G A Z I N E . C O M

77

source tarball of the latest
public release is available
from the JACK website.
The site also provides in-
structions for building
JACK from CVS sources
for those who want to
keep up with the latest development. No
special build requirements are needed
for JACK itself beyond Erik de Castro
Lopo’s libsndfile audio file I/ O library.

According to the JACK FAQ, you must
have a recent Linux kernel (2.4 or
higher) with the tmpfs file system turned
on. Most modern distributions will have
this turned on by default, but you can
check for it by running cat /proc/filesys-
tems. The FAQ also states that you must
mount a shared memory filesystem on
/dev/shm, advising that the following
line be added to /etc/fstab:

shmfs /dev/shm shm U
defaults 0 0

The FAQ further notes that you may
have to create the /dev/shm directory
yourself.

After unpacking the sources, simply
enter the new JACK directory, read the
README for up-to-date instructions,
then invoke ./configure --help to see the
available configuration options. JACK is
built with the familiar autotools utilities,
so for most users the compile process is
as easy as running ./configure [your
options here]; make; make install.

Installing JACK from an RPM or other
package also requires no special support.
Follow the basic installation procedure
for your system, and voila, you have a
fresh JACK system ready for use.

Starting JACK
The JACK server is launched with either
jackd or jackstart. The JACK manual
page (man jackd) tells us that jackd in-
vokes the JACK server daemon and that
jackstart is used when using JACK’s
built-in support for realtime capabilities.
All options are the same for either invo-
cation. For most users working on sys-
tems with a patched 2.4 kernel, jackstart
will be the preferred method of starting
the server. Users working with 2.6 ker-
nels should use jackd.

Here’s a relatively simple beginning :

jackd -R -d alsa -d hw:0

In this example, JACK has been started
with realtime capability, acknowledging
the ALSA back-end and addressing the
first hardware device in the audio
system. The -d hw:0 switch is actually
unnecessary; the hardware selection
always defaults to hw:0 anyway. Obvi-
ously, you would use a different number
for a different card or chipset in a system
with multiple sound devices.

Here’s a slightly more complex exam-
ple for my SBLive soundcard :

jackstart -R -d alsa -d hw:1U
 -p 512 -r 48000 -z s

Once again, we see the realtime and
ALSA options. The device selector is
numbered hw:1 because the SBLive is
the second card in that particular ma-
chine. I’ve added options for the buffer
size (-p), for the JACK sample rate (-r),
and for the audio dithering option (-z).

Note that the -p option sets the software
buffer size. As Jack O’Quin points out,
this is the buffer size seen by all JACK
clients.

See the box titled “JACK Options” for
more on command line options for
JACK.

GUIs for JACK
We have already seen JACK in action at
the command prompt. However, when
working in an X environment it’s nicer
to have a GUI for JACK’s setup and con-
figuration, and thanks to developer Rui
Nuno Capela, we have the wonderful
QJackCtl (Figure 1). This most helpful
utility provides an all-in-one graphic in-
terface for configuring and controlling all
of JACK’s operations. In addition to the
convenient setup dialog (Figure 2), QJC
supplies an audio connections panel for
JACK clients and a set of basic JACK
transport controls (if you want to use
QJC as the JACK transport master). QJC
further supplies messaging and status
display panels, controls to start and stop
the server, and play/ pause controls for
JACK’s transport control system.

QJC also includes a MIDI connections
panel for ALSA sequencer clients, letting

The audio industry distinguishes be-
tween consumer and professional grade
audio devices. Consumer-grade devices
include PCI and USB audio interfaces,
on-board chipsets for integrated desktop
and laptop sound support, and more ad-
vanced hardware such as Creative’s SB
Live! and Audigy cards. These devices
normally provide channels for a master
volume control, PCM and CD audio out-
put, and inputs for microphone and line-
level signals. The master volume, CD,
mic, and line channels are self-explana-
tory. The PCM channel is a general digi-
tal audio playback channel providing
volume control for programs playing
WAV, AIFF, OGG, MP3, and other sound-
file types.

Depending on the audio chipset, these
basic services may be expanded to in-
clude channels for on-board synthesizer
output, digital audio connections, sur-
round sound channels, and bass/ treble
tone controls. Software mixers such as
alsamixer poll the audio hardware for its
capabilities and configure the mixer to
display the available channels and
switches. Thus, my laptop’s CS4232

audio chipset supplies little more than
the basic services, while my desktop
machine’s SBLive provides a much
larger array.

Professional-grade audio boards such as
the RME Hammerfall or the M-Audio
Delta cards are designed to satisfy differ-
ent needs, providing higher-quality
audio connectivity such as AES/ EBU and
balanced 1/ 4” plugs, a greater number of
audio I/ O channels, higher sampling
rates, and hardware synchronization
capabilities. These professional-quality
cards may or may not include hardware
MIDI connectivity, and they do not usu-
ally include consumer-grade amenities
such as an on-board synthesizer or a
connector to your CD drive’s audio
output.

The distinction between the grades is
obscured by some more advanced de-
vices intended for the consumer market,
and it is certainly possible to achieve
truly high-quality results from some of
the more modern soundcards. However,
for truly professional requirements you’ll
need professional-grade audio hard-
ware.

Regarding Soundcards

Figure 1: Controlling JACK from QjackCtl.

LINUXUSERJACK audio server

77ISSUE 67 JUNE 2006W W W. L I N U X- M A G A Z I N E . C O M

users manage audio and MIDI connectiv-
ity from a single control interface. You
can save and load your total connections
graph as a Profile in QJC’s Patchbay
(Figure 3). The Patchbay’s operation
isn’t quite automatic, but it is a real
time-saver if your connections are many
and complex.

QJC is my favorite standard tool for
controlling JACK, but there are at least
two other GUIs for managing JACK con-
nectivity. Dave Robillard’s Patchage is a
patchbay for both JACK audio and ALSA
MIDI connectivity via its unique visual
interface (Figure 4). Matthias Nagorni’s
QJackConnect is a nice JACK-only QT-

based patchbay, but it appears that proj-
ect development is on hold.

Applications Using JACK
JACK support has become an expected
feature in new Linux audio software. As
a result, the list of implementations has
become too lengthy to print here, but its

When you first meet JACK, you may be
confused by some of its options. This
brief summary will help you find your
way around.

First the parameter settings:

• -R, --realtime – Starts JACK with real-
time scheduler priority. Normally, you
will want this option enabled, but be
aware that it works only if you have
root status or are running a kernel that
grants such status to a normal user.
Kernels from AGNULA/ Demudi and
Planet CCRMA are prepared for such
status, but any kernel can be patched
and modified for low-latency with
root-user capabilities enabled. Jack
O’Quin indicated to me that JACK
needs root privileges only for realtime
scheduling and memory locking. I
asked members of the Linux Audio
Users mail list whether there might be
good reasons to not use the realtime
option, and I learned that JACK is still
useful on systems without realtime
capability, hence the option. Addition-
ally, you might want to turn off real-
time capabilities in a testing or trou-
bleshooting scenario.

• -m, --no-mlock – Signals JACK to keep
memory unlocked. Paul Davis ex-
plained that this option could be useful
when running JACK in realtime on a
system whose physical RAM is being
consumed by JACK and its clients.

• -u, --unlock – Unlocks memory claimed
by graphics toolkits (GTK, QT, FLTK,
WINE). Again, this option is useful for
machines with low amounts of mem-
ory (physical RAM), but it is especially
useful for users running VST/ VSTi
plugins and other WINE-dependent
applications. In some cases, such ap-
plications may not run at all until this
option is selected.

• -s, --softmode – Ignores xruns
reported by an ALSA driver, making
JACK less likely to disconnect unre-
sponsive ports when run without real-
time status. You might select this op-
tion to avoid too-copious error reports.
This option might also be valuable for
live performance.

• -S, --shorts – Forces JACK’s I/ O to 16
bits. As Lee Revell pointed out, JACK’s

internal processing is always carried
out at 32 bits, and by default, it will at-
tempt to set the bit resolution at its
input and output stages to 32, 24, and
16, in that order, reporting success or
failure with each attempt. Users with
cards known to work optimally at 16
bits might want to use this option just
to avoid the error reports.

• -H, --hwmon – Enables hardware mon-
itoring of ALSA’s capture ports, provid-
ing zero-latency monitoring of audio
input. Requires hardware and device
driver support. The jackd man page
says when this option is enabled, “re-
quests to monitor capture ports will be
satisfied by creating a direct signal
path between audio interface input
and output connectors, with no pro-
cessing by the host computer at all.
This offers the lowest possible latency
for the monitored signal.”

• -M, --hwmeter Another ALSA-only
option. Enables hardware metering
if your soundcard supports it. Paul
Davis notes that this option is used
only rarely and that it is likely to be
removed in future releases.

• -z, --dither – Dithering is a process that
minimizes unwanted side-effects of
reducing an audio file’s bit-depth.
Low-level noise is mixed into a signal
to randomize digital audio quantiza-
tion errors, turning audible and un-
pleasant digital distortion into some-
thing more closely resembling analog
noise. According to Paul Davis, dither-
ing is especially helpful when your
soundcard’s output is less than 24-bit
resolution and you run JACK at the
hardware’s real sample rate.

• -P, --realtime-priority – Sets the real-
time scheduler priority. Normally,
you can leave this setting at its default
value of 10. If your kernel includes
realtime preemption, you might want
to set this value to at least 70 to keep
JACK running ahead of interrupt
handlers.

• -p, --port-max – Sets the maximum
number of JACK output ports. This op-
tion is especially valuable for people
using a lot of tracks in Ardour. The de-
fault of 128 should be enough for most

users. QjackCtl lets you select up to
512 ports, but more are available with
sufficient memory.

• -d, --driver – Select hardware driver. In
fact, you’re selecting the audio system
back-end with this option. Currently
supported systems include ALSA,
OSS/ Linux, CoreAudio, PortAudio, and
a dummy system (useful for testing).
Most Linux users will want to choose
either ALSA or OSS.

• -r, --rate – Sets JACK’s sample rate.
The default is 48000 Hz, but you may
need to experiment to determine the
best sample rate for your system.
Lower-powered systems may find it
necessary to bring down the sample
rate to improve performance, but gen-
erally you want a rate of at least 44100
Hz for high-quality sound. Note too
that some soundcards (e.g., the SB-
Live) work well only at a single sample
rate.

• -p, --period – Specifies the number of
frames between JACK’s process()
function calls. The default value is
1024, but for low latency you should
set -p as low as possible without pro-
ducing xruns. Larger periods yield
higher latency but also make xruns
less likely, so you may have to experi-
ment to find the optimal setting for
your hardware. Incidentally, man jackd
tells us that JACK’s input latency (mea-
sured in seconds) is --period divided
by --rate.

• -i, --inchannels; -o, --outchannels –
These settings determine the number
of audio I/ O channels. The default is
the maximum number supported by
your hardware.

• -n, --nperiods – Specifies the number
of periods in the hardware buffer. The
default value is 2. The period size (-p)
times --nperiods times four will equal
the JACK buffer size in bytes.

• -C, --capture; -P, --playback; -D, --du-
plex – Set JACK to record-only, play-
back-only, or full duplex status (simul-
taneous play and record). This setting
can be very important: Some cards
will simply not perform well in duplex
mode but work quite well in the sim-
plex modes.

JACK Options

JACK audio serverLINUXUSER

78 ISSUE 67 JUNE 2006 W W W. L I N U X- M A G A Z I N E . C O M

domains of implementation include
hard-disk recording systems (Ardour,
ecasound, Wired), drum machines/
rhythm programmers (Hydrogen),
software sound synthesis environments
(Csound5, SuperCollider3), audio/ MIDI
sequencers (Rosegarden, MusE, seq24),
soundfile editors (Snd, Audacity, mh-
WaveEdit, ReZound), and standalone
softsynths (AMS, Om, ZynAddSubFX).
Other significant JACK-savvy projects
include the LinuxSampler and Specimen
sampler projects and the various
schemes for supporting VST/ VSTi audio
plugins under Linux (these schemes also
require the WINE software). Linux me-
dia playback systems such as MPlayer,
XMMS, and AlsaPlayer also provide
JACK support.

Readers should note that these appli-
cations vary in the scope of their JACK
support. Some use only its audio con-
nectivity, some use only partial imple-
mentations of its transport control, and a
few already take more complete advan-
tage of JACK’s features. Please consult
the documentation for any JACK-aware
application to determine the extent of its
support.

The basic JACK package includes a
number of useful command-line tools
such as jack_connect/jack_disconnect
(manages client connections), jack_
metro (a configurable metronome), jack_
lsp (lists JACK ports, their connections
and properties), and jack_transport
(manages JACK transport control
status).

JACK has also inspired a wave of cool
tools and utilities. Bob Ham’s JACK-Rack
is a very useful container for LADSPA

plugins that lets
you build a virtual
rack of audio pro-
cessing modules
with MIDI control
of plugin parame-
ters. Steve Harris’s
JAMin is the result
of a collective
effort by Linux
audio profession-
als to create a pro-
quality stereo
mastering interface based on LADSPA
audio signal processing plugins. Time-
machine is another treat from Steve Har-
ris. It’s essentially a recorder that always
maintains a buffer of the last ten sec-
onds of recorded material. When fully
armed, Timemachine writes the buffer
to disk and continues recording in real-
time. Fons Adriaensen’s JAAA (JACK
and ALSA Audio Analyser) is a profes-
sional-grade signal generator and spec-
trum analyser designed for accurate
audio measurement. And just to show
that there’s no absolute need for a fancy
GUI, Florian Schmidt’s jack_convolve is
a JACK-based command-line convolu-
tion engine, very handy for creating
high-quality reverb effects and other
interesting sounds.

URLs for all these and other JACK ap-
plications are listed on the Linux Sound
& MIDI Software site [9].

JACK In Action
Figures 5 and 6 show off JACK in two
typical uses here at Studio Dave. Figure
6 illustrates the simpler use in an audio-
plus-MIDI network combining the seq24

MIDI sequencer, the QSynth soundfont-
based synthesizer, and the JACK-Rack,
all operating on my PII 366 Omnibook
and its humble Crystal Sound CS4232
chipset. Figure 5 demonstrates a more
ambitious set of routing and connections
with JACK managing I/ O.

There’s little more to say about using
JACK in these scenarios. Once I’ve con-
figured JACK, its performance is com-
pletely transparent. All I have to do is
make my connections and make my
music.

Programming With JACK
Programming with the JACK API is be-
yond the scope of this article. Interested
readers can find excellent instructional
material in the JACK source code (see
simple_client.c in the example_clients
directory) and on various Web sites.
James Shuttleworth’s tutorial at http://
www. dis-dot-dat. net/ index. cgi?item=/
jacktuts/ starting/ is a well-written intro-
duction to adding JACK to a simple
audio application, Lewis Berman has
contributed a PDF on writing a JACK
audio recorder at http:// userpages. umbc.

Figure 2: The QJackCtl setup dialog box.

Figure 3: QJC’s Patchbay helps you manage connections.

Figure 4: Patchage is a patchbay for JACK and ALSA.

JACK audio serverLINUXUSER

80 ISSUE 67 JUNE 2006 W W W. L I N U X- M A G A Z I N E . C O M

edu/ ~berman3/, and of course, the
JACK API can be read and studied in the
well-commented jack. h header file.

If you build JACK yourself and you
have the doxygen software installed, you
can generate JACK’s developer docu-
mentation. This documentation is also
available on the JACK website, but it is
out of date as of September 15, 2005.

JACK’s Future
In 2004, JACK won a well-deserved
Bronze award in the Merit Awards
granted by the Open Source Initiative.
At that point, JACK’s development was
at version 0.9x. As I write this article,
JACK is now at version 0.100.0, heading
steadily towards its 1.0 release, and the
future is looking good for JACK.

Stephane Letz has successfully ported
JACK to OSX. Support for OSX has be-
come common in new Linux audio soft-
ware. Incidentally, an implementation
for Java has already appeared.

MIDI musicians are familiar with time
code implementations not currently sup-
ported by JACK, and a coordination of
synchronization capabilities would be
most welcome. Some work in that direc-
tion has already begun, so it is likely that
a blend of MIDI and JACK will evolve.

JACK’s attractions may seem irresist-
able, but it may not be the best solution
for common desktop audio services. Un-
like ALSA, JACK is not planned for inclu-

sion with the Linux kernel sources, so
its presence in any Linux distribution
results from a decision made by the dis-
tro’s producer. Also, JACK is not so
transparent to the user as the artsd and
esd servers, and more configuration is
required for obtaining best performance.
Nevertheless, JACK is a very flexible sys-
tem and may yet become the de facto
audio server for the Linux desktop.

For the more professionally inclined
JACK is a godsend. Its performance sta-

bility has already been tested and veri-
fied in high-demand real audio world
applications, and its applicability can
be seen in an expanding suite of in-
creasingly powerful JACK-based pro-
grams. JACK’s API has paved the way
for a new wave of high-quality Linux
audio applications. Whether you need
rock-solid audio system performance for
Ardour or you just want to have some
fun routing the output from XMMS, you
need to know JACK. ■

[1] The JACK Home Page:
http:// jackit. sourceforge. net

[2] ALSA Soundcard Matrix:
http:// www. alsa-project. org/ alsa-doc/

[3] Patchage: http:// www. scs. carleton. ca/
~drobilla/ patchage/

[4] QJackConnect:
http:// www. suse. de/ ~mana/ jack. html

[5] QJackCtl:
http:// qjackctl. sourceforge. net/

[6] Interview with Paul Davis at Builder.
com: http:// builder. com. com/
5100-6375-5136755. html?tag=tt

[7] The Low-latency Mini-HOWTO:
http:// www. djcj. org/ LAU/ guide/ Low_
latency-Mini-HOWTO. php3

[8] Florian Schmidt’s notes on building a
low-latency 2.6 kernel: http:// tapas.
affenbande. org/ ?page_id=3

[9] The JACK page at linux-sound.org:
http:// linux-sound. org/ jack. html

INFO

Figure 6: JACK with an audio-plus-MIDI network.

Figure 5: A more ambitious JACK configuration.

JACK audio serverLINUXUSER

82 ISSUE 67 JUNE 2006 W W W. L I N U X- M A G A Z I N E . C O M

