
44

Nobody likes applications
that spend all day sitting in
the corners of the desktop

and refusing to talk to anything
else. The least you might expect
would be for them to exchange
data with other desktop resi-
dents using simple drag & drop
techniques. But many users
expect their programs to
demonstrate more ad-
vanced communication
skills at all levels. Of
course, users want plug-
gable USB disks no mat-
ter what program they
are using. And VOIP
softphones should
make friends with
the new hardware
when you change
the headset with-
out demanding a

reboot.
To allow this to

happen, a Linux
system needs a com-

munication system
that lets desktop appli-
cations talk to one an-
other and to the un-
derlying levels right
down through the
kernel to the
hardware. And if
the Freedesktop
developers
have any say
in the mat-
ter, D-Bus
[1], which
relies on
Hardware
Abstrac-
tion Layer

HAL [2], will be the communication sys-
tem for future generations of Linux.

Talk to Me
D-Bus is an Inter Process Communica-
tion (IPC) system; that is, it provides the
infrastructure that lets applications talk
to one another and to parts of the oper-
ating system. Although IPC mechanisms
were introduced to Unix years ago, they
are restricted to signals, pipes, and simi-
lar things.

This may sound familiar to you; after
all, competitive approaches have been
around right from the beginning – just
think of CORBA, Microsoft’s DCOM, or
hundreds of other projects. Both KDE
and Gnome have experimented with
their own CORBA implementations from
the outset. KDE introduced its own
DCOP system, and Gnome’s CORBA leg-
acy is evidenced by the Bonobo compo-
nent system. Regardless of their personal
opinions of CORBA, most developers
who just want to code a desktop applica-
tion are overtaxed by the system. And
this possibly explains why Bonobo has
been vegetating behind the Gnome
scenes for so long.

D-Bus is designed as a simple system
with a small footprint. The basic Lib-

It’s the end of the line for CORBA! Gnome now relies on the D-Bus mes-

saging system, and KDE is in the process of migrating.

BY OLIVER FROMMEL

Interprocess communication with D-Bus and HAL

FAST TRAFFIC

w
w

w
.p

h
oto

ca
se.co

m

Oliver spent several
years as a sysop
and programmer at
Ars Electronica Cen-
ter in Linz/Austria.

After finishing his
studies in Philoso-
phy, Linguistics and
Computer Science, he became an
editor for the Bavarian Broadcasting
Corporation. Today he is head of the
Editorial Competence Center for
Software and Programming at Linux
New Media AG.

T
H

E
 A

U
T

H
O

R

D-Bus and HALKNOW-HOW

44 ISSUE 68 JULY 2006

45

dbus library simply provides functions
that allow two applications to communi-
cate. Application developers don’t typi-
cally use the library, preferring, instead,
the Glib-API-based Libdbus-Glib, which
provides an object-oriented C-API. It is
at this level that D-Bus’s capabilities ex-
tend to provide a genuine bus system
living up to its name. The server process,
dbus-daemon, runs in the background
and listens for connection requests from
applications that register for various
event types, such as plugging and un-
plugging specific hardware. When the
event occurs, the D-Bus daemon sends a
message along the bus, and the applica-
tions respond accordingly.

System Global or Per
Session
On systems that use D-Bus, each server
process implements two buses: the sys-
tem bus and the session bus. The system
bus launches at boot time and keeps on
running even if no users are logged on to
the system. When a user runs the GUI-
based login manager to launch a desktop
session, a server process for the session
bus is launched. The dbus-daemon bi-
nary has command line parameters for
both modes: --system or --session. The
D-Bus package includes the dbus-launch
for starting the daemon and setting the
required environmental variables. Most
distributions launch the session mode
D-Bus daemon along with the X session.

Figure 1 shows the role the two buses
play in communications between the op-
erating system components. The session
bus lets applications belonging to a

desktop session talk to each other. Of
course, these applications can be ser-
vices provided by the desktop environ-
ment. In contrast to this, the system bus
mainly ensures that desktop programs
can talk to the underlying layers. For ex-
ample, an application can use the system
bus to register for a specific hardware
class, such as, say, digital cameras.

Hardware Management with
HAL
D-Bus does not provide its own hard-
ware management; instead it relies on
the Hardware Abstraction Layer, HAL.
Although HAL is independent of D-Bus,
the two components work hand in hand:
HAL uses D-Bus to provide services, and
D-Bus was mainly programmed for HAL.

Besides the kernel, modern distribu-
tions use the Udev subsystem for user-
space hardware management. As of ver-
sion 0.59, Udev replaces the hotplug sys-
tem, which has only recently established
itself as a mechanism for supporting
pluggable hardware by running /sbin/
hotplug. Besides kernel and Udev infor-
mation, HAL now has additional details
on devices stored as FDI files (Device In-
formation Files) in an XML format. List-
ing 1 shows a section from an FDI file
for a digital camera.

Gnome NetworkManager [3] is a good
example of how components cooperate.
It uses the HAL daemon to monitor the
network subsystem. When changes
occur, such as a user plugging in or un-
plugging a wireless USB stick, the dae-
mon uses D-Bus to notify NetworkMan-
ager. Besides genuine devices, HAL can

also handle filesystems; it has the ability
to identify filesystem types, including
LUKS-encrypted partitions [4]. In
Gnome, HAL now handles the lion’s
share of the hardware management, par-
ticularly hot-pluggable devices. The
gnome-volume-manager process, which
runs in the background, makes this hap-
pen; To configure the process, Gnome
users run the gnome-volume-properties
front-end (Figure 2).

There is also a front-end for HAL that
gives users a tree view of the attached
devices (Figure 3). Fedora users will find
the hal-device-manager hidden away in
the hal-gnome package.

Using D-Bus
The D-Bus protocol specification is avail-
able from [1]. The protocol defines four
message types that users can send over
the bus. For example, one application
can call the methods provided by an-

01 <deviceinfo version="0.2">

02 <device>

03 <match key="info.bus"
string="usb">

04 <match key="usb.
interface.class" int="0x06">

05 <match key="usb.
interface.subclass"
int="0x01">

06 <match key="usb.
interface.protocol"
int="0x01">

07 <merge key="info.
category"
type="string">camera</merge>

08 <append key="info.
capabilities"
type="strlist">camera</
append>

09 <merge key="camera.
access_method"
type="string">ptp</merge>

10 </match>

11 </match>

12 </match>

13 </match>

14 </device>

15 </deviceinfo>

Listing 1: 10-camera-ptp.fdi

Figure 1: D-Bus and HAL in the overall context of a Linux system’s components. Applications

use D-Bus to query HAL about the underlying hardware.

Application

Udev

Application

HAL

Hardware

Kernel

D-BusSystem Bus Session Bus

KNOW-HOWD-Bus and HAL

45ISSUE 68 JULY 2006W W W. L I N U X- M A G A Z I N E . C O M

other application. To reflect this, the sec-
ond type represents a response to a call
request. The third message type is used
for error handling by the server applica-
tion. The fourth message type provides
signals transmitted by applications over
the bus that do not require a response.
Programmers can call D-Bus methods
synchronously or asynchronously.

D-Bus uses a multi-level naming
schema to identify message sources and
targets. Each application contains one or
more objects that can be addressed via
paths made up of inverted domain
names, with the object name itself ap-
pended, for example, /org/freedesktop/

DBus. Objects pro-
vide services that
look similar, but are
dot-separated: org.
freedesktop.DBus.
The interface
groups the methods
and signals for an
object; again, a dot-
ted notation is used
in a similar ap-
proach to a Java
interface.

Security
It would not be a
good idea to let
non-privileged
users access D-Bus.
According to the de-

velopers, security has been a major con-
cern right from the outset. In a simple
case, the UID would be evaluated to con-
trol access. If the bus daemon and the
clients belong to the same user, no re-
strictions are applied. D-Bus also imple-
ments security policies that define a us-
er’s privileges to allow more granular
control (Listing 2).

D-Bus can also be used with SE Linux,
probably because Red Hat is the main
developer.

Practical Applications
Other applications besides Gnome have
started to use D-Bus. A fairly up-to-date
list is available at [5]. Although users are

advised not to change working systems,
you can use D-Bus to control the BMPx
and Banshee audio players. A useful
thing for network-aware programs is the
current version of the Avahi Zero-Conf
package which supports D-Bus. This
means that applications can be notified
when servers appear on the network.

D-Bus Programming
There is good news and bad news for
D-Bus programmers. The good news is
that bindings are available for a variety
of programming languages [6], from the
Glib-C API, through Python, to Ruby, C#,
and Java. The bad news is that the API
has changed so frequently in the past
that many sample programs on the Inter-
net will not run on the current D-Bus
versions. There is a general lack of docu-
mentation on D-Bus interaction. Your
best bet is to investigate the source code
of working program, such as the Gnome

01 <busconfig>

02 <!-- Only root can send this
message -->

03 <policy user="root">

04 <allow send_
interface="com.redhat.
PrinterSpooler"/>

05 </policy>

06

07 <!-- Allow any connection to
receive the message -->

08 <policy context="default">

09 <allow receive_
interface="com.redhat.
PrinterSpooler"/>

10 </policy>

11 </busconfig>

Listing 2: cups.conf

01 import dbus

02

03 bus = dbus.SystemBus()

04 proxy_obj = bus.get_object
('org.freedesktop.Hal',

05 '/
org/freedesktop/Hal/Manager')

06 hal_manager = dbus.Interface
(proxy_obj, 'org.freedesktop.
Hal.Manager')

07

08 dev_list = hal_manager.
GetAllDevices()

09

10 for dev in dev_list:

11 print dev,"\n"

Listing 3: hal.py

01 import gobject

02 import dbus

03 import dbus.glib

04 import dbus.service

05

06 class HelloWorldObject(dbus.
service.Object):

07 def __init__(self, bus_
name, object_path):

08 dbus.service.Object.__
init__(self, bus_name, object_
path)

09 @dbus.service.method('org.
firstfloor.HelloWorldIFace')

10 def hello(self):

11 return "blabla"

12

13 session_bus = dbus.
SessionBus()

14 bus_name = dbus.service.
BusName('org.firstfloor.
HelloWorld', bus=session_bus)

15 object = HelloWorldObject(bus_
name, '/org/firstfloor/
HelloWorldObject')

16

17 mainloop = gobject.MainLoop()

18 mainloop.run()

Listing 4: server.py

Figure 2: Working with HAL and D-Bus: the Gnome Volume Man-

ager, which is user-configurable via gnome-volume-properties.

(shown above)

D-Bus and HALKNOW-HOW

46 ISSUE 68 JULY 2006 W W W. L I N U X- M A G A Z I N E . C O M

Network Manager, which was written in
Python.

The basic approach is the same for all
supported programming languages: con-
nect to the bus, pick up a reference for
the remote object and the interface, and
issue requests, or register signal han-
dlers. When a program registers a signal
handler, it requires a main loop that
regularly checks for incoming signals.
It is advisable to use the Glib mainloop
object for D-Bus programs, no matter
whether you use C or a scripting
language.

The following short sample code list-
ing in Python shows you how to use D-
Bus in your own programs. Using object-
oriented constructs such as objects and
interfaces is far easier in Python than in
Glib-C programs. Just look how easy it is
to import the D-Bus module in Line 1 of
Listing 3. Some changes have occurred
in D-Bus version 0.41 or newer: if you
want to use the Glib mainloop, note that
the Glib objects and methods now reside
in the dbus.glib module.

Interface-based access is another fea-
ture that has developed over time. Many
sample programs on the Internet demon-
strate the use of the deprecated methods,
get_service. Today, you need a proxy ob-
ject that uses an interface to place a
wrapper round the access. The bus
object’s get_object method gives you
this ability, providing the arguments org.
freedesktop.Hal and /org/freedesktop/
Hal/Manager (Listing 3, Line 4). The
proxy object’s static dbus.Interface
method generates an interface, which
the programmer can then call.

Some D-Bus API features require spe-
cial expressions in the various program-
ming languages. For example, the Py-
thon API uses Python 2.4’s new decora-
tors to identify signals and service meth-
ods (see Listing 4).

Just like in the client example, the
sample program starts by connecting to
the D-Bus. The HelloWorldObject object’s
constructor is then called to run the
method __init__ . The @dbus.service.

method decorator specifies the interface
methods.

Automatic Launch
Thus far, we have just assumed that an
application connects to D-Bus of its own
accord and then runs as a client. A pro-
gram that provides D-Bus services either
needs to be launched at boot time, or the
D-Bus server has to launch it. To allow
this to happen, the server needs to know
the service name of the binary to exe-
cute; the server parses a .service configu-
ration file to discover the name. Listing 5
gives an example of a configuration file
for the BMPx audio player.

As you have seen from the examples,
it is not really difficult to use D-Bus to let
your own applications talk to the outside
world, although finding the right func-
tion in the API jungle can be a pain.

D-Bus has spread like wildfire to many
Linux distributions, despite the fact that
it is still under development and the in-
terfaces change from one release to the
next. If you are interested in experiment-
ing with D-Bus at this stage, be aware
that major changes to the D-Bus API can
occur without notice.

Back to the Future
In a step that adds a touch of irony to
the D-Bus development story, the inven-
tors of D-Bus now find it important to

have a system that works throughout a
network. In this light, it is probably just
a question of time until the system starts
to mutate into the kind of monster that
CORBA has become. If this happens,
let’s hope a new group of developers at
Novell or Red Hat steps into to start
again from scratch.

As of this writing, Gnome draws
most heavily on D-Bus, to manage hot-
plug devices such as cameras, hard
disks, or scanners, for example. But the
KDE developers are slowly migrating
their applications to D-Bus, and even Qt
now speaks D-Bus, so application devel-
opers should maybe take some time out
to ride the D-Bus, too. ■

01 [D-BUS Service]

02 Name=org.beepmediaplayer.bmp

03 Exec=/usr/libexec/
beep-media-player-2-bin

Listing 5: BMPx.service

[1] D-Bus: http:// www. freedesktop. org/
wiki/ Software/ dbus

[2] HAL: http:// www. freedesktop. org/ wiki/
Software/ hal

[3] Gnome NetworkManager:
http:// www. gnome. org/ projects/
NetworkManager

[4] LUKS for HAL: http:// www. redhat.
com/ magazine/ 012oct05/ features/ hal

[5] D-Bus software:
http:// www. freedesktop. org/ wiki/
Software_2fDbusProjects

[6] Language bindings for D-Bus:
http:// www. freedesktop. org/ wiki/
Software_2fDBusBindings

INFO

Figure 3: The HAL Device Manager showing a tree-view of the hardware

KNOW-HOWD-Bus and HAL

47ISSUE 68 JULY 2006W W W. L I N U X- M A G A Z I N E . C O M

