
76

GCC 4.1 has seen the light of the
world with a delay of just one
week [1]. Release Manager Mark

Mitchell was forced to postpone the
scheduled released data slightly to ac-
commodate 128-bit floating point sup-
port for the PowerPC, as this feature is
important for the future Glibc 2.4.

Manual Parser
One of the major changes is that GCC
now uses the parser introduced with the
latest version of C++ for C and Objec-
tive C. This manually written recursive
descent parser (that is, it was not written
with a traditional parser generator such
as Bison or Yacc) is quicker, and is ex-
pected to be easier to maintain in the
long run.

Apple added the ability to mix Objec-
tive C with C++ code to the GCC on
MacOS X quite awhile back. Objective C
is an alternative to C++ that offers ob-
ject-orientation with a syntax that re-
sembles that of Smalltalk, along with dy-
namic typing and introspection. On the
downside, it lacks modern C++ con-
structs such as templates or namespaces.
Objective C++ now gives you the ability
to mix C++ features with Objective C,
or simply to use C++ libraries with Ob-
jective C code.

The GCC developers have now inte-
grated the Stack Smashing Protector

(SSP) which was developed by IBM and
has been available as an add-on patch
for quite awhile now [2]. Programs built
with SSP support change the order of
variables on the stack to prevent inad-
vertent or malicious pointer manipula-
tion. SSP lets programmers design func-
tions to detect buffer overflows.

The GCC programmers have also con-
siderably extended the Java library that
implements major aspects of the Java
API, including the AWT graphic toolkit
and Swing. The Java applications alone
take up more than a third of the Change-
Log [3]. GCJ and GNU Classpath support
the compilation of the Eclipse developer
environment, which was written in Java,
without modifying the code.

The new optimizations, which are
based on the Tree SSA infrastructure in-
troduced in version 4.0 now work across
function borders. This provides a more
reliable scheme for detecting unused
sections of code, candidates for inlining,
and variables completely removed by
optimizations. The developers have also
improved automatic vectorization,
which maps loops to vector units such
as SSE (Intel/ AMD) and Altivec (Pow-
erPC) .

Legacy
Just as in previous versions of GCC,
GNU extensions have been removed

from standardized languages to ensure
improved portability of the applications
across different platforms and compilers.
In this latest version of the GNU com-
piler, it appears that friend declarations
in classes have somehow fallen foul of
the cleanup:

struct a {
 friend void f() {
 ...
 }
};

The new version of the GNU Compiler (GCC) has a fresh crop of optimizations and support for Objec-

tive C. The Recursive Descent Parser introduced in version 4.0 is now used for the C and Objective C

derivatives. BY RENÉ REBE

GCC 4.1 – Features and Benchmarks

TEST FLIGHT

For the benchmarks, I again used the
Openbench benchmark collection re-
ferred to in previous articles for this
magazine. Openbench has now offi-
cially made the benchmark list on the
GCC homepage [8].

I had to change a few things; I updated
Botan again to the more recent version
1.4.12, and replaced the libmad test,
which shows very similar results for dif-
ferent compilers, with the Lame open
source MP3 encoder.

As many other open source developers
are interested in a free benchmark with
similar properties to SPEC, I anticipate
that an initial reference version of Open-
bench will be frozen this year for future
comparisons. Your comments and as-
sistance are welcome.

Benchmarks

GCC 4.1PROGRAMMING

76 ISSUE 68 JULY 2006 W W W. L I N U X- M A G A Z I N E . C O M

77

In GCC 4.1, C++ programmers have to
define a standards-compliant friend
function outside of the class:

struct a {
 friend void f();
}

void f() {
 ...
}

Overspecified namespaces, as used in
many C++ programs, are another vic-
tim, as an analysis by Debian program-
mer Martin Michlmayr demonstrates [4].

class b {
 void b::f ();
};

The GNU Compiler now returns an error:
error: extra qualification ‘b::‘ on member
‘f’. In this example, you need to remove
the b:: in front of the class methods.

Speed
As in my previous articles on the GNU
Compiler, I again used Openbench to

discover how the current compiler com-
pares to its predecessors (see the
“Benchmarks” box).

In response to a request by several
readers, I measured the -O0 time, al-
though this makes the diagrams more
dynamic. The new GCC versions com-
pile far more quickly if optimization is
disabled. -O0 is particularly useful in the
edit-compile cycle during development.
The Athlon system I used previously has
now been replaced by an AMD64 Tu-
rion64.

The most obvious effect is visible in
the Botan and Tramp3d C++ tests: 25
percent quicker for O2, and over 40 per-
cent for O3 in the case of Botan. The leg-
acy C benchmark results are a mixed
bunch (see Figure 1).

If you take a look at the build times
(Figure 2), you will see how much more
work the compiler puts in if a user en-
ables optimization. And the optimization
effort is not always reflected as a posi-
tive influence on the benchmark run-
times. One thing that makes me optimis-
tic is that at least the demanding
Tramp3d C++ benchmark is compiled
more quickly by version 4.1 than by the
predecessor.

SSP
As mentioned earlier, the IBM Stack
Smashing Protector lets programmers

Figure 1: Runtimes for various compiler scenarios.

3.4.0-O0
4.0.0-O0
4.1.0-O0
3.4.0-O1
4.0.0-O1
4.1.0-O1
3.4.0-Os
4.0.0-Os
4.1.0-Os
3.4.0-O2
4.0.0-O2
4.1.0-O2
icc9.0-O2
4.0.0-O2-loops
4.1.0-O2-loops
4.0.0-O2-rename-reg
4.1.0-O2-rename-reg
4.0.0-O2-tracer
4.1.0-O2-tracer
4.0.0-O2-vect
4.1.0-O2-vect
3.4.0-O3
4.0.0-O3
4.1.0-O3
4.0.0-O3-loops
4.1.0-O3-loops
4.0.0-O3-rename-reg
4.1.0-O3-rename-reg
4.0.0-O3-tracer
4.1.0-O3-tracer
4.0.0-O3-vect
4.1.0-O3-vect

(in seconds – smaller is better)

209.64

226.50

230.15

35.70

29.46

29.15

28.30

28.55

29.85

29.13

28.27

28.68

28.54

27.89

26.71

29.02

28.26

29.12

28.44

28.46

28.40

28.37

28.43

27.40

26.69

28.58

27.76

28.74

28.44

Botan
32.99

34.83

34.71

13.56

14.46

14.71

13.18

12.73

13.28

13.39

13.66

13.91

13.15

13.24

13.16

12.95

13.35

13.39

13.71

13.52

13.87

12.05

12.89

13.61

12.95

13.04

12.66

13.34

13.37

13.61

13.32

13.82

Bzip2
21.25

21.73

23.05

11.91

11.24

10.78

10.66

11.35

11.14

12.02

12.36

11.68

13.86

10.60

11.54

12.36

10.46

10.62

11.01

10.45

10.38

12.22

11.40

10.12

12.00

10.36

10.62

11.15

11.67

10.26

10.49

10.05

Gnupg
25.32

26.91

26.86

10.67

9.49

10.52

9.62

10.87

12.31

9.82

9.50

9.26

9.69

9.22

9.61

9.30

9.19

9.31

9.38

9.46

9.43

9.66

9.85

9.16

9.30

9.09

9.89

9.18

9.54

9.11

10.01

9.34

Gzip
210.95

236.93

236.45

88.74

91.51

91.20

88.04

90.89

91.71

83.25

86.36

86.71

81.93

86.08

83.86

85.64

86.19

86.51

87.24

88.12

87.04

82.12

86.55

87.08

84.08

83.40

84.90

85.67

86.70

86.80

87.86

86.14

Lame
7.56

6.77

6.78

2.33

2.11

1.98

2.10

2.12

2.03

2.10

2.07

1.99

2.16

2.04

1.92

2.02

1.95

2.05

1.99

2.08

2.01

1.92

2.05

1.97

2.02

1.92

2.02

1.92

2.05

1.95

2.08

1.98

OpenSSL
249.80

296.70

232.79

23.00

8.95

7.18

12.97

91.33

19.66

13.73

8.66

6.46

5.80

4.21

8.13

6.34

8.16

6.46

8.39

6.62

13.84

8.21

4.49

5.75

4.30

8.06

4.25

8.03

4.50

8.45

4.66

Tramp3d

01 int f () {

02 char a [200];

03 char* b = a;

04 int i;

05 for (i = 0;

06 i < 201; ++i)

07 a[i] = i;

08 }

09

10 int main () {

11 f ();

12 }

Listing 1: ssp-text.c

01 int main () {

02 char a [200];

03 char* b = a;

04 printf ("%c\n", b[200]);

05 }

Listing 2: mudflap-test.c

PROGRAMMINGGCC 4.1

77ISSUE 68 JULY 2006W W W. L I N U X- M A G A Z I N E . C O M

detect buffer underflows or overflows.
To do so, it places a random value from
/dev/urandom, or if this is not available,
a terminating string \0\xFF\n somewhere
near the return address on the stack. If
this value is changed when the program
exits the function, you can assume that
the return address has also been over-
written. This is a technique commonly
used by hackers and malware. In this
case, the program outputs a warning and
quits. If you compile and run the pro-
gram in Listing 1, you will see an error
message similar to the following:
*** stack smashing detected ***
: ./ssp-test terminated

The canary makes it difficult for at-
tackers to inject malevolent code in the
form of scripts. The GCC command line
parameter, -fstack-protector, enables this
protection.

Mudflap
A technique introduced in GCC 4.0 takes
this protection one step farther than SSP,
enabling validation of pointer references
in C and C++. During the build, this
mechanism, known as Mudflap [5], in-
struments memory access to reflect the
access type and the conditions the com-

piler detects at this time. For example,
constant propagation could render some
checks unnecessary. At runtime, the
functions provided by the Libmudflap li-
brary validate this access, terminating
the program in critical cases. Libmudflap
also validates many standard C functions
capable of overwriting memory, includ-
ing mem*, str*, *put*, *get*, and many
more. To use Mudflap, all files must be
compiled with the -fmudflap flag and
linked with -lmudflap. The small C test
program in Listing 2 just accesses a
memory position one byte beyond the
boundary of the a array. In our test,
Mudflap correctly pointed out the vari-
able name that overstepped the bound-
ary.

As Mudflap validates memory access
in many cases, it can affect performance
considerably in comparison to SSP,
which is hardly noticeable. In this light,
Mudflap is mainly useful for developers
who are interested in a quick method of
detecting potentially critical errors at an
early stage of development.

Future
Version 4.1 of the GNU compiler comes
with new optimizations and other im-

portant advances. GNU programmers,
however, are already looking ahead to
the next release. The features scheduled
for integration with GCC 4.2 [6] include
support for OpenMP [7] and extensions
of the C, C++, and Fortran languages to
support explicit parallelization. These
projects will close the gaps that recently
opened up between the free compiler
collection and commercial compilers. ■

Figure 2: Build times for various compiler scenarios.

3.4.0-O0
4.0.0-O0
4.1.0-O0
3.4.0-O1
4.0.0-O1
4.1.0-O1
3.4.0-Os
4.0.0-Os
4.1.0-Os
3.4.0-O2
4.0.0-O2
4.1.0-O2
icc9.0-O2
4.0.0-O2-loops
4.1.0-O2-loops
4.0.0-O2-rename-reg
4.1.0-O2-rename-reg
4.0.0-O2-tracer
4.1.0-O2-tracer
4.0.0-O2-vect
4.1.0-O2-vect
3.4.0-O3
4.0.0-O3
4.1.0-O3
4.0.0-O3-loops
4.1.0-O3-loops
4.0.0-O3-rename-reg
4.1.0-O3-rename-reg
4.0.0-O3-tracer
4.1.0-O3-tracer
4.0.0-O3-vect
4.1.0-O3-vect

(in seconds – smaller is better)

106.80

94.02

95.98

156.91

141.38

183.61

193.57

60.30

63.76

198.22

165.72

99.01

76.35

103.32

168.43

236.07

171.01

238.54

166.87

234.50

93.44

78.25

104.89

81.48

109.67

180.12

248.32

178.12

252.00

177.04

247.40

Botan
2.23

2.35

2.38

2.87

3.77

4.55

4.48

3.90

4.34

5.09

5.62

6.17

5.36

6.16

7.06

5.45

6.13

5.49

6.17

5.89

6.43

5.79

6.13

7.05

7.74

7.97

6.25

7.15

6.26

7.17

6.79

7.45

Bzip2
16.46

17.09

17.14

23.48

27.05

29.16

30.25

31.77

33.33

33.56

35.82

36.66

32.90

38.10

41.98

35.96

37.66

35.02

37.42

35.76

38.24

36.13

37.01

40.57

42.20

47.05

38.18

41.61

38.90

41.32

39.10

43.59

Gnupg
1.06

1.12

1.16

1.56

2.01

2.17

1.86

2.19

2.35

2.15

2.64

2.67

2.07

3.40

3.64

2.48

2.70

2.54

2.77

2.56

2.82

2.40

2.83

3.22

3.80

4.18

2.88

3.25

2.97

3.28

3.02

3.37

Gzip
14.90

15.04

15.25

19.09

21.84

23.51

23.46

23.77

25.54

24.68

28.14

29.90

29.32

35.60

38.54

28.57

30.16

28.54

30.45

29.78

31.78

26.88

30.80

35.95

38.77

43.08

30.91

36.08

31.95

36.19

32.70

37.73

Lame
74.05

76.13

74.85

88.40

98.03

100.46

98.96

104.91

108.28

109.39

118.50

117.30

118.61

120.06

125.88

115.84

118.95

116.25

117.98

117.78

121.03

112.72

116.92

123.19

124.95

130.84

119.53

124.97

118.46

123.72

121.69

127.30

OpenSSL
28.12

35.63

35.46

50.41

110.11

87.50

68.16

43.36

42.60

74.60

139.78

108.59

144.44

115.81

134.40

109.20

136.12

110.14

141.35

112.31

73.52

142.56

117.28

153.54

123.62

144.09

117.92

145.33

119.48

150.60

121.95

Tramp3d

[1] GCC homepage: http:// gcc. gnu. org/

[2] Stack Smashing Protector SSP:
http:// www. trl. ibm. com/ projects/
security/ ssp/

[3] Changes to GCC 4.1: http:// gcc. gnu.
org/ gcc-4. 1/ changes. html

[4] Compiling Debian with GCC 4.1 –
report on experiences: http:// gcc. gnu.
org/ ml/ gcc/ 2006-03/ msg00740. html

[5] Mudflap http:// gcc. fyxm. net/ summit/
2003/ mudflap. pdf

[6] GCC 4.2 http:// gcc. gnu. org/ wiki/
GCC%204. 2%20Projects

[7] OpenMP http:// www. openmp. org/
drupal/ mp-documents/ spec25. pdf

[8] Openbench http:// www. exactcode. de/
oss/ openbench/

Info

GCC 4.1PROGRAMMING

78 ISSUE 68 JULY 2006 W W W. L I N U X- M A G A Z I N E . C O M

