
58

The kernel allocates memory to
applications, controls access to
the filesystem, and performs

many other important tasks, but for
most users, the kernel is always hiding
behind a shell or a GUI. Ordinary users
usually don’t need to tinker with the
kernel.

The Linux kernel, however, is actually
quite visible – it resides in the /boot/vm-
linuz-kernelversion file. Depending on
your distribution, the kernel can occupy
1 or 2MB on disk. But this single file is
only part of the picture. The files below
/lib/modules/[kernelversion] are just as
much a part of the kernel. This directory
weighs in at no less than 70MB on Suse
10.0, but not everything in this directory
requires memory space. In fact, the mod-
ules in this directory are just loaded on
demand.

More or less every distribution comes
with ready made binaries for the kernel
and modules, however, it is possible to
compile the kernel just like any normal

program. To do so, you need the kernel
sources and the GNU C Compiler.

Time for Something New
Distribution-specific kernels normally
work without causing much trouble, but
in some situations, you may find your-
self needing to build a new kernel. For
instance, if you have security-critical ap-
plications, you may want to rebuild the
kernel if vulnerabilities are disclosed.
And in some cases new kernel versions
have improved support for new hard-
ware.

You may also have occasion to work
with kernel patches. Patches give you
the ability to add new functions to the
kernel. One example of this is Software-

Suspend2 [1]: this patch, which is really
useful for laptop users, gets Suspend wor-
king on systems where the plain vanilla
kernel fails.

Keeping track of kernel development is
not a trivial task because the changes
between versions are just too numerous.
The changelog on Kernelnewbies.org [2]
gives you an overview. If you are re-
building the kernel to address a hard-
ware problem, you are more likely to
find notes about the problem in the con-
text of the hardware device you are try-
ing to fix. If a forum tells you that your
DVB card will work with kernel 2.6.13,
but you have 2.6.12 on your system, it
might be time to fire up your compiler.

Building a new kernel is not a risky
process. The bootloader will let you
choose between different kernels. After
installing a new kernel, there is nothing
to stop you booting the older version.
Figure 1 shows the steps for getting a do-
it-yourself kernel build running on your
machine.

Kernel Sources
Your distribution might have a package
with updated kernel sources, but the lat-
est available kernel will always be avail-
able at Kernel.org. As the site is often hit
by capacity problems, make sure you
use a mirror [3]. Download the kernel

Worried about a recent security exploit? Want to take advantage of a new

hardware feature? You don’t need to be a Linux expert to patch and com-

pile the Linux kernel. We'll show you how to get started.

BY PETER KREUSSEL

Rebuilding the kernel for non-experts

Resource management (memory, CPU
cycles etc.)
Filesystem access
Network access
Access to hardware components

Table 1: Kernel Functions

Kernel TipsKNOW-HOW

58 ISSUE 69 AUGUST 2006 W W W. L I N U X- M A G A Z I N E . C O M

59

with the highest version number, and
unpack the archive in /usr/src.

You should be aware that the “plain
vanilla” kernel could differ considerably
from your distribution kernel. Distribu-
tors typically add a large number of
patches that add functionality, improve
driver support, and resolve known bugs.

The question as to whether the plain
vanilla kernel from Kernel.org or the dis-
tribution-specific version provides better
underpinnings for a stable system is
mainly a question of faith. Neither is
likely to cause major issues. This said, if
you want the most recent version of the
kernel, you may have no alternative to
the official version.

This article works with the official re-
lease by the kernel developer team. An
alternative is the so-called mm tree,
which contains contemporary enhance-
ments from the kernel development pro-
cess. These enhancements can be both
bug fixes and extensions, which need to
go through final testing before being ad-
opted into the standard kernel. Andrew
Morton releases the mm tree as a patch
against the standard kernel. The “Patch-
ing the Kernel” box describes how to
apply a Linux kernel patch.

Spoiled for Choice
The Linux kernel has a modular struc-
ture: various functions (for example sup-

port for a specific filesystem or a specific
sound card) can be enabled or disabled
when you build the kernel. The more
functions you enable, the bigger the ker-
nel will become – at least in theory. The
compilation time will be longer if you
use the kernel’s on-demand load func-
tion.

Most kernel features can be added to
the kernel as modules or built in. Only
the built-in components will be resident
in memory as Linux loads kernel mod-
ules on demand. This is why it does not
make much difference in practical terms
if you enable kernel functions you may
not need (Figure 2).

Preparation
As Linux distributions are designed to
run on almost any
kind of hardware, it is
common to include al-
most everything the
kernel has to offer in
the form of modules,
with the exception of
some extremely rare
or problematic compo-
nents.

Most distributions
store the standard ker-
nel configuration in
/boot/config-kernelver-
sion. Root can query
the current kernel ver-
sion by entering
uname -r. Suse users
will not find the kernel
configuration in /boot;
instead the current
kernel dynamically
generates a config.gz
file below /proc. Copy

this file to the kernel directory, run gun-
zip config.gz to unpack the file, and re-
name it .config.

Run all make commands as root and
from within the /usr/src/linux-kernelver-
sion directory. Start by removing the
traces of the development process from
the kernel tree you just unpacked by en-
tering make mrproper. Then copy the
configuration file to the kernel tree by
entering cp /boot/config-kernelversion
/usr/src/linux-kernelversion/.config,
where kernelversion is the version of the
Linux kernel you are building.

The kernel includes a Qt-based, a Gtk-
based, and a console-based configura-
tion front-end. These tools help you se-
lect the functions your do-it-yourself ker-
nel build will provide. The configuration
menu, which has the same entries no
matter which front-end you choose, con-
tains several hundred settings – a daunt-
ing prospect at first glance.

You just copied the configuration files,
and you will have a pre-configured ker-
nel after running the configuration tool
by entering make menuconfig (console
version), make gconfig (Gtk version), or
make xconfig (Qt version) (Figure 2).
The console version requires ncurses-
devel and is generally regarded as the
most reliable tool.

If you copy a .config file from an older
kernel version to your source tree, make
sure you run Menuconfig or another

Copy the patch to /usr/src/ and unpack
patches ending in .gz with gunzip. Then
change to the kernel directory and use
the same patch tool to apply the patch:

$ cd linux-2.6.[Version]

$ patch -p1 <../[Patchfile]

Patching the Kernel

Figure 1: Step by step to the new kernel: you don't have to be an

expert to build your own.

Kernel sources
download and unpack

Which repository?
• Standard
• Morton

[Patch]
download and apply
path

in /usr/src/
path-pl

Configuration
• clone current
 configuration
• modify

• Suse: make cloneconfig
• others: /boot/config-2.6xxx
 make oldconfig

Compile
• make
• make modules_install

Successful
• build does not quit with error
• bzImage in arch/i386/boot

Install
• bzImage to /boot
• entry in menu.lst

Run mkinitrd and enter new
kernel image and initrd in
boot loader

Menu entry Function Default setting

Code maturity level options Allow selection of experimental Enabled
 drivers
Processor Type and features Processor architecture settings Normally, only the Processor

family will need modifying.
Power management options Useful for laptop owners Can be enabled without any

danger
Networking For experts only (e.g. Bluetooth Keep the defaults
 and infrared support)
Device Drivers Configure drivers for hardware Modify as required
 devices
File systems Support for filesystem types May need modifications if you

are doing without an initial
ramdisk

Table 2: Kernel Configuration Main Menu

KNOW-HOWKernel Tips

59ISSUE 69 AUGUST 2006W W W. L I N U X- M A G A Z I N E . C O M

configuration tool at least once before
you jump into the build. This will add
configuration options new to the latest
kernel version and automatically set the
defaults.

Now quit the configuration without
changing any settings. To quit the con-
figuration, select Exit in Menuconfig or
Xconfig until the tool asks you if you
would like to save the configuration. Say
yes when prompted. If you are working
with Gconfig, you will have to save the
configuration yourself; failure to do so
will result in any changes being dis-
carded.

After creating the new kernel and
booting once from the it, launch the
configuration tool again, and modify
the kernel configuration once more if
necessary.

Home Straight
Now the only thing separating you from
a ready-to-run kernel is a make (and a
wait of between 5 and 30 minutes). Dur-
ing the build, you will see many mes-
sages output on your screen. You can
typically ignore warnings (Figure 3).
There are a few exceptions for Debian
and Ubuntu users (see box).

If the build completes without the
dreaded word error appearing on your
screen, you will find a new kernel in the
kernel source code tree below /arch/pro-
cessor-architecture/boot in the form of
the bzImage file. For a PC, this is /arch/
i386/boot; this also applies to amd_64
kernels. Copy the bzImage file to the
/boot directory. Rename the file to vm-
linuz-kernelversion. Also copy the sys-
tem.map file to /boot/system.map-kernel-
version. Then call make modules_install
to install those parts of the kernel you
configured as modules.

All you have to do now is add an entry
for the new kernel to the bootloader start
menu. If your distribution uses the Grub
bootloader, and most distributions do
nowadays, you can edit the /boot/grub/

menu.lst file to do this. If you have Lilo,
the entries are in /etc/lilo.conf.

Up and Running
A classic chicken and egg problem oc-
curs at boot time: to read filesystems, the
kernel needs modules that reside within

a filesystem on disk. Most distributions
opt for a so-called initial ramdisk to re-
solve this. The kernel first temporarily
mounts the initial ramdisk as the root
filesystem, and the bootloader places the
ramdisk’s content at the kernel’s dis-
posal. The kernel finds the required

Debian and Ubuntu users should not
use the make command to compile the
kernel. They should use make-kpkg
instead. This command assumes you
have the kernel-package. If you need an
initial ramdisk, add the --initrd parame-
ter.

Building the Kernel on
Debian and Ubuntu

Figure 2: The same kernel configuration in various configuration tools. The driver for the Ext3

filesystem is built in, whereas Reiserfs uses a module.

Kernel TipsKNOW-HOW

60 ISSUE 69 AUGUST 2006 W W W. L I N U X- M A G A Z I N E . C O M

modules in the ramdisk. An alternative
would be to build filesystem and hard
disk drivers into the kernel.

Running mkinitrd without any param-
eters is typically all it takes to generate
new initial ramdisks for all kernel im-
ages in /boot. The details of mkinitrd
vary, so reading the manpage is a good

idea. If this works out, you should have
a new Initrd image initrd-[kernelversion]
in the /boot directory.

Listing 1 shows a menu.lst with en-
tries for a Ubuntu system and a Suse sys-
tem. The root line specifies the partition
with the kernel image. The hd(0,0) syn-
tax stands for first hard disk, first parti-
tion, that is: hda. The following two
lines designate the kernel image and the
initial ramdisk image. The kernel image
name is followed by the parameters to
pass to the kernel at boot time.

Although menu.lst may look complex,
it is actually easy to create a Grub menu
entry for a new kernel. Just copy the
standard entry for your distribution, and
then modify the filenames for the kernel
and initial ramdisk, along with the title.
Do not remove any existing entries.

Now reboot your machine, select the
new kernel from the boot prompt, and
watch for error messages. The plain va-
nilla kernel will not give you a boot-
splash screen, but you can always add
the bootsplash patch [4] later.

Fine Tuning
If the new kernel is happy to boot with
the settings it inherits from the previous

kernel, all you need to do is to modify a
few settings (for example to enable driv-
ers added by the new version). If you
then recompile the kernel, only those
parts of the source code affected by the
changes will be rebuilt.

The “Kernel Configuration Main
Menu” table gives you an overview of
the critical entries at the top level of the
kernel configuration menu. The menu
items missing from the table are nor-
mally reserved for experts. For example,
it is not a good idea to change the Net-
working Support, unless you really know
a lot about the kernel’s network support.
Removing drivers that you do not need
is not typically an issue with 2.6 kernels.
In contrast to this, the version 2.4 build
tended to fail because of driver interde-
pendencies that the configuration tool
had tagged as not resolved.

Never enable the debug options, as
they are likely to cause major perfor-
mance hits, and always create a safe
copy of the .config file before you at-
tempt to modify a working kernel config-
uration.

Up and Running
If the system works as expected, you
can modify the value for the default
entry in menu.lst to make the new ker-
nel your standard boot option. The Ker-
nel Build HOWTO [5] has more details
on working with the Linux kernel. And
the Kernelnewbies.org [6] site has a
good collection of background informa-
tion on kernel-related topics. ■

title Ubuntu, U

kernel 2.6.12-9-386

root (hd0,0)

kernel U

/boot/vmlinuz-2.6.12-9-386

root=/dev/hdc1 ro quiet splash

initrd /boot/U

initrd.img-2.6.12-9-386

title SUSE LINUX 10.0

root (hd0,8)

kernel /boot/vmlinuz root=/dev/
hdc9 vga=0x31a selinux=0 resume=/
dev/hdc3 splash=silent showopts

 initrd /boot/initrd

Listing 1: menu.lst entries
for Ubuntu and Suse

[1] Software Suspend2 patch (kernel
patch with alternative suspend func-
tion): http:// www. suspend2. net/

[2] Kernel changelog in “human-
readable” format: http://
kernelnewbies. org/ LinuxChanges

[3] Mirrors for downloading the Kernel
sources: http:// kernel. org/ mirrors/
countries/ html/ DE. html

[4] Bootsplash patch: http:// bootsplash.
org/ und http:// www. bootsplash. de/

[5] Comprehensive HOWTO on building
the Linux kernel: http:// www.
digitalhermit. com/ linux/
Kernel-Build-HOWTO. html

[6] Tips and information on the Linux ker-
nel – not only for geeks:
http:// kernelnewbies. org/

INFO

Figure 3: You can often ignore warnings during the build, but the word “error” indicates that

something has gone wrong.

Kernel TipsKNOW-HOW

62 ISSUE 69 AUGUST 2006 W W W. L I N U X- M A G A Z I N E . C O M

