
74

Hiking with a navigation system
is much more fun. A portable
GPS device not only gives you

your current position, but it can also tell
you your altitude or the distance to a
waypoint. Based on this data, the GPS
device can also tell you your walking
speed, the distance you have covered,
and an estimated time of arrival. What’s
more, once you get back home you can
attach your GPS device to your PC,
download the data you collected en
route, and map the hike.

Although the “eTrex” GPS receiver by
Garmin is a low-budget device for begin-
ners, it is perfect for the occasional hiker.
The eTrex, which costs about 120 Euros
(US$ 99 in the US), is handy, waterproof,
and so robust that it will survive knocks
and bumps without damage. To hitch up
the eTrex GPS to your PC back home,
you need a special interface cable that
connects the eTrex to your computer’s
serial port. The official cable for the
eTrex is quite expensive (at about 25
Euros, US$ 32, GBP 17), and this ex-
plains the project at [3], which helps
you do it yourself. I must confess that I
was lazy this time: I just bought it.

Babylonian Confusion
GPS receivers can use various formats
for exported data, but a freeware pro-
gram called gpsbabel [4] can help you
fight the Babylonian confusion of
tongues. Besides the ability to handle
dozens of different data formats, the tool
can read the data from a Garmin eTrex
connected to the serial port of your
Linux machine. The GPS receiver’s
memory stores the waypoints you’ve
marked along the way, along with your
routes (manually created collections of
waypoints), and tracks (collections of
coordinates recorded automatically
every few seconds).

If you erase your track memory before
you set off, and download it when you
get back home, you will have an exact

Putting GPS data on maps

HIKE PILOT

Michael Schilli works
as a Software Devel-
oper at Yahoo!,
Sunnyvale, Califor-
nia. He wrote “Perl
Power” for Addison-
Wesley and can be
contacted at mschilli@perlmeister.
com. His homepage is at
http://perlmeister.com.

T
H

E
 A

U
T

H
O

R

Perl hackers take to the hills with a navigation system that provides a

graphical rendering of a hiking tour. BY MIKE SCHILLI

Perl: Plotting GPS DataPROGRAMMING

74 ISSUE 69 AUGUST 2006

75

digital recording of your hike. This is a
good starting point for various kinds of
creative evaluations. Let’s assume you
connect your Garmin GPS to the second
serial port on your PC; you could then
enter gpsbabel -t -i garmin -f /dev/
ttyS1 -o gpx -F tracks.txt to download
the track data (-t) in Garmin format (-i
garmin) from the second serial port
(/ dev/ ttyS1, the first port would be
/dev/ ttyS0), and store the data in GPX
format (-o gpx) in a file called tracks.txt
(-F tracks.txt).

To avoid the need to run the process
that controls the GPS device as root, you
need to make the device entry for the se-
rial port globally writable before reading
the data (the process requires write priv-
ileges):

chmod a+rw /dev/ttyS1
ls -l /dev/ttyS1
crw-rw-rw- 1 root uucp 4, U
65 Feb 10 22:47U
/dev/ttyS1

Some time later (be patient; serial ports
were invented in the previous century),
the gpsbabel command returns, and you
will hopefully discover the XML-format-
ted track data in tracks.txt (Figure 3). To
avoid the need to parse all the XML data
for the evaluations we will be perform-
ing, the script in Listing 1 converts the
data to YAML format, which is easier on
the human eye than XML. Also, YAML
data can incidentally be converted to a
Perl data structure at one fell swoop. Fig-
ure 4 shows the YAML data – easier to
read, don’t you think?

track2yml uses the XML::Twig module
from CPAN, which defines a handler that
the Twig dancer jumps to for every Trkpt
tag. The XML::Twig::Elt object passed to
the handler represents the <trkpt> tag
found with all of its sub-tags.

The lat (for latitude) attribute is a dec-
imal value. Northern latitudes are posi-
tive and southern latitudes negative. The
lon (for longitude) attribute expresses
western longitudes as negative values,
and eastern longitudes as positive val-
ues. The ele (for elevation) subelement
gives you the height of the track point

above sea level in meters. The <time>
tag gives you the UTC time (GMT time-
zone) in ISO 8601 notation.

The str2time() function from the
CPAN Date::Parse module converts the
ISO 8601 timestamp to the timezone-in-
dependent Unix time in seconds for later
calculations. The handler() function
bundles all the data into a hash and

Figure 1: The “eTrex” mobile GPS receiver by

Garmin is a low-budget device for beginners.

Figure 2: A special connector lets you hitch

up the eTrex to your PC’s serial port.

01 #!/usr/bin/perl -w

02 use strict;

03 use Sysadm::Install qw(:all);

04

 05 use XML::Twig;

06 use Date::Parse;

07 use YAML qw(DumpFile);

08

 09 my $twig =

10 XML::Twig->new(

11 TwigHandlers =>

12 { "trkpt" => \&handler, }

13);

14

 15 my @points = ();

16 $twig->parsefile(

17 "tracks.xml");

18 DumpFile("tracks.yml",

19 \@points);

20

 21 #############################

22 sub handler {

23 #############################

24 my ($t, $trkpt) = @_;

25

 26 my $lat =

27 $trkpt->att('lat');

28 my $lon =

29 $trkpt->att('lon');

30 my $ele =

31 $trkpt->first_child('ele')

32 ->text();

33

 34 my $isotime =

35 $trkpt->first_child(

36 'time')->text();

37

 38 my $time =

39 str2time($isotime);

40

 41 push @points,

42 { lat => $lat,

43 lon => $lon,

44 ele => $ele,

45 time => $time,

46 isotime => $isotime,

47 };

48 }

Listing 1: tracks2yml

[1] Listings for this article:
http:// www. linux-magazine. com/
Magazine/ Downloads/ 69/ Perl

[2] Google Maps Hacks, Rich Gibson &
Schuyler Erle, O’Reilly 2006

[3] HOWTO and mail address for
do-it-yourself Garmin interface cable:
http:// pfranc. com

[4] GPS format converter:
http:// www. gpsbabel. org

[5] Yahoo! Maps Web Services – AJAX
API Getting Started Guide: http://
developer. yahoo. com/ maps/ ajax/

INFO

PROGRAMMINGPerl: Plotting GPS Data

75ISSUE 69 AUGUST 2006W W W. L I N U X- M A G A Z I N E . C O M

saves a hash reference as an element in
the global array @points. The YAML
module’s DumpFile method, which is
called later, stores the whole array, in-
cluding the hash references, in an easily
readable format in a file named tracks.
yml, where subsequent scripts can read
from it by calling LoadFile().

Uphill and Down Dale
Today’s hike takes us north of the
Golden Gate Bridge along the “Coastal

Trail” and the
“Rodeo Trail” up-
hill and down dale
through the Marin
Headlands, a pic-
turesque, hilly

landscape on the Pacific coast. Taking
the track data collected by the GPS sys-
tem over the course of three hours, and
plotting the elevation data against a time
axis results in a graph like the one
shown in Figure 5.

Shortly after 1:00 pm, I hit the trail at
an altitude of about 200 meters above
sea level, dropping down to sea level
after about one and a half hours of gen-
tle climbs and descents. This was fol-
lowed by a steep 200 meter climb back

to the starting point of the round course.
Listing 2 plots the graph using the

RRDTool::OO module, which uses the
rrdtool round-robin database under the
hood. I used rrdtool due to its elegant
(say: automatic) date display on the X
axis. Line 8 reads the YAML data, and
the following new() constructor creates
a new RRD database, using a temporary
file, as we will not need the data later.
The tmpfile() function returns two argu-
ments, of which we will only be passing
the first one to new().

The create() method then defines
the data store schema, which expects a
value every 60 seconds. The GPS re-
ceiver delivers track data every couple of
seconds, but rrdtool simply aggregates

Figure 4: The same track data in YAML format after converting with

track2yml.

01 #!/usr/bin/perl -w

02 use strict;

03 use YAML qw(LoadFile);

04 use RRDTool::OO;

05 use File::Temp qw(tempfile);

06

 07 my $trkpts =

08 LoadFile("tracks.yml");

09

 10 my $rrd =

11 RRDTool::OO->new(

12 file => (tempfile())[1]);

13

 14 $rrd->create(

15 start =>

16 $trkpts->[0]->{time} - 1,

17 step => 60,

18 data_source => {

19 name => "elevation",

20 type => "GAUGE"

21 },

22 archive => { rows => 10000 }

23);

24

 25 for my $trkpt (@$trkpts) {

26 eval { # Deal with dupes

27 $rrd->update(

28 time => $trkpt->{time},

29 value => $trkpt->{ele}

30);

31 };

32 }

33

 34 $rrd->graph(

35 start =>

36 $trkpts->[0]->{time},

37 end =>

38 $trkpts->[-1]->{time},

39 image => "elevation.png",

40 vertical_label =>

41 'Elevation',

42 width => 300,

43 height => 75,

44 lower_limit => 0,

45);

Listing 2: elerrd

Figure 3: The GPX (XML) formatted track data I downloaded from the

Garmin GPS.

Perl: Plotting GPS DataPROGRAMMING

76 ISSUE 69 AUGUST 2006 W W W. L I N U X- M A G A Z I N E . C O M

the data. The database can store a maxi-
mum of 10,000 averaged one-minute
elevation values, and that should be
enough for even extended hikes.

The for loop starting in line 25 iterates
over the trackpoints and feeds them into
the database, along with the track time,
using the update() method. As rrdtool
complains and aborts if the same time-
stamp occurs twice, I wrapped the up-
date command in an eval block to teach
the script to be more tolerant.

The graph() method plots the graph.
The first trackpoint sets the start time,
and the timestamp for the last trackpoint
sets the end time. In next to no time, you
should have an attractive PNG-formatted
diagram in the file specified in Line 39,
elevation.png (Figure 5).

Sums and Spheres
To calculate the distance covered, Listing
3 has to iterate through all the track-
points, calculate the distance between
them, and add the individual distances.
Each trackpoint is a reference to a hash

that stores the latitude in lat and the lon-
gitude in lon. $last_pt stores the track-
point from the last round of the loop
(apart from in the first round). It calcu-
lates the distance between two track-
points based on known longitudinal and
latitudinal values. This is nontrivial, as
the values represent points on the sur-
face of an ellipsoid. The CPAN Geo::
Distance module uses trig functions to
perform the calculations and provides
a simple distance() method, which ex-
pects the required unit of distance (“ki-
lometer” or “mile”) and two trackpoints
as longitudinal and latitudinal values.
The function returns a value for the
distance, which dist then gobbles up:

$./dist
Total: 11.67km

Mashing Up Maps
Recently so called “mash-ups” have
been all the rage; basically, this means

pimping an online
map with a do-it-
yourself exten-
sion. Besides
Google, the com-
pany I work for,
Yahoo!, also lets
programmers dy-
namically add tags
to scalable maps
using a simple
Javascript API.

To plot the trail
on a Yahoo map,
I first have to re-
duce the volume
of the data. The
1800 trackpoints
I collected during
the hike would
just give me an
unintelligible
mess. This is why Listing 4 iterates over
the trackpoints in a for loop, pushing
trackpoints that are more than 0.4 kilo-
metres from the preceding trackpoint to

the back of the @points array.
Again, Geo::Distance takes care
of the complex distance calcula-
tions.

A Mash-Up HOWTO is
avaiable from [5]. Figure 6
shows you the required Java-
script code. If you intend to use
the API, note that you should

obtain an application ID first. Listing 4
uses the YahooDemo ID, which allows
50,000 requests per day for an IP ad-

dress. Note that the service doesn’t per-
mit live GPS navigation; the GPS data
has to be at least 6 hours old.

The Javascript code and various
HTML tags are stored in the map.tmpl
template file, which is read by Listing 4,
interpreted via the CPAN Template Tool-
kit by processing the content within the
magical [%...%] tags. The Template
Toolkit provides a simple scripting lan-
guage with only limited control function-
ality to avoid having too much program
logic in the presentation layer. Also, ac-
cess to variables is amazingly simple;
hashes, arrays, and references are all
handled in the same way using a magic

Figure 5: Elevation above sea level during the hike.

01 #!/usr/bin/perl -w

02 use strict;

03 use YAML qw(LoadFile);

04 use Geo::Distance;

05

 06 my $trkpts =

07 LoadFile("tracks.yml");

08 my $geo =

09 Geo::Distance->new();

10

 11 my $total = 0;

12 my $last_pt;

13

 14 for my $trkpt (@$trkpts) {

15 if ($last_pt) {

16 my $k = $geo->distance(

17 "kilometer",

18 $last_pt->{lon},

19 $last_pt->{lat},

20 $trkpt->{lon},

21 $trkpt->{lat}

22);

23

 24 $total += $k;

25 }

26 $last_pt = $trkpt;

27 }

28

 29 printf "Total: %.2fkm\n",

30 $total;

Listing 3: dist

Figure 6: The template with the Javascript code for creating the

mash-up.

PROGRAMMINGPerl: Plotting GPS Data

77ISSUE 69 AUGUST 2006W W W. L I N U X- M A G A Z I N E . C O M

dot (.). For example, to reference the
first element in an array pointed to by
$points, and to extract the value for the
lat key in the underlying hash, the Tem-
plate Toolkit notation is points.0.lat. Perl
would need $points->[0]->{lat} for
this. Sweet!

The output from Listing 4 is simply
redirected to an HTML file and then
rendered by a browser. This gives you a
600x400 pixel window with a map that

you can pan and scale, since the embed-
ded Javascript talks to Yahoo’s map
server. You can toggle to the satellite
view, and there is even a hybrid mode
that allows you to overlay the satellite
image with data from the map.

Figure 7 shows the initial browser
image in which the trackpoints are dis-
played as little orange bubbles num-
bered 1 through 19. Readers outside the
US should note that Yahoo maps for your

country may not be as detailed, but
(low-res) satellite images should be
available at least.

The Javascript code in Figure 6 only
demonstrates some of the Map API’s
simplest gimmicks; you can add bubbles
with images and all kinds of other good-
ies. Events such as mouse clicks and
drags can be captured, evaluated using
Javascript code, and possibly sent back
to the server using Ajax tricks. ■

01 #!/usr/bin/perl -w

02 #############################

03 # map - Put track markers on

04 # a Yahoo Map

05 #############################

06 use strict;

07 use YAML qw(LoadFile);

08 use Geo::Distance;

09 use Template;

10

 11 my $trkpts =

12 LoadFile("tracks.yml");

13 my $geo =

14 Geo::Distance->new();

15

 16 my $count = 0;

17 # Minimum marker distance

18 my $min = 0.4;

19 my @points = ();

20 my $last_pt;

21

 22 for my $trkpt (@$trkpts) {

23 if ($last_pt) {

24 my $k = $geo->distance(

25 "kilometer",

26 $last_pt->{lon},

27 $last_pt->{lat},

28 $trkpt->{lon},

29 $trkpt->{lat}

30);

31

 32 next if $k < $min;

33 }

34 $trkpt->{count} = ++$count;

35 push @points, $trkpt;

36

 37 $last_pt = $trkpt;

38 }

39

 40 my $template =

41 Template->new();

42 my $vars =

43 { points => \@points };

44

 45 $template->process(

46 "map.tmpl", $vars)

47 or die $template->error();

Listing 4: map

Figure 8: The same mash-up after clicking the button on the top left

to toggle to the hybrid satellite image, then scaling up using the

zoom tool.

Figure 7: The finished mash-up with trackpoints from the hike north

of San Francisco. A script plots points recorded on the hike by the

eTrex device

Perl: Plotting GPS DataPROGRAMMING

78 ISSUE 69 AUGUST 2006 W W W. L I N U X- M A G A Z I N E . C O M

