
46

With the advent of the informa-
tion society, office PCs
spawned at mind boggling

rates in most companies. These com-
puters share most of their time with a
common task: the idle task. Activities
such as browsing the Internet or work-
ing on an office document aren’t very
challenging for contemporary CPUs. If
you are sitting next to your PC, and you
are not currently encoding audio or vid-
eos, invoke the uptime command. The
average load will surely be far below 1.0.

This low level of usage indi-
cates a poor workload on
your PC, which means that

your boss paid too much for it.
A basic idea behind grid computing is

to harness these idle CPU cycles for
something useful. For instance, you
could use an idle desktop computer to
process biomedical signals or simulate
an environmental model.

The most famous grid/distributed
computing project is the SETI@home
project. SETI (which stands for Search
for ExtraTerrestrial Intelligence [1]) uses
Internet-connected PCs around the
world to search for intelligent communi-

cations from space. The SETI@home
grid management tasks are organized
through a system known as the Berkeley
Open Infrastructure for Network Com-
puting (BOINC) [2]. BOINC is also the
engine behind other grid computing ef-
forts, such as the BBC Climate Change
Project, which lets home users assist
with deriving climate models, and the
Einstein@home project, which puts
home PCs to work on the task of analyz-
ing data from gravity wave detectors.

The free and open-source BOINC sys-
tem is available to anyone who wants to
download it, which means that you can
use BOINC to create and deploy your

Building distributed applications with BOINC

IDLE CYCLES

w
w

w
.p

h
oto

ca
se.co

m

Grid computing lets little PCs work on big

problems. You can use the grid system

of the famous SETI@home project to

build your own grid computing solutions.

BY MARC SEIL

BOINCKNOW-HOW

46 ISSUE 71 OCTOBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

47

own grid computing applications. If you
have a big problem you want the whole
world to work on, or even if you just
want to give the PCs in your office net-
work something to do in their idle time,
BOINC provides the infrastructure for
you to get started.

This article describes how to set up
a BOINC grid infrastructure on a Gentoo
Linux and how to run and deploy a
demo application to dedicated BOINC
clients.

Serving the Grid
The idea behind a grid system such as
BOINC is to let client computers lend
their CPU cycles to solving small parts
of a large calculation. In order for the
system to work, the grid needs a server
system that attends to several important
management tasks. The tasks fall into
the following categories:
• Resource discovering and monitoring

– which nodes are running idle and
what is their status?

• Resource allocation – send some work
to the idle nodes;

• Messaging – allow communication
between the nodes;

• Security – if public resources (like the
Internet) are part of the grid, protect
the tasks, data, nodes, and grid against
possible intrusions.

The efficiency of the grid system
depends upon the efficiency of these
management tasks.

In a simplified view (Figure 1), a
BOINC grid consists of a server and mul-
tiple computing clients (nodes). The
BOINC server, which can spawn on mul-
tiple machines, manages the grid-related
tasks and sends the computing jobs
(work units) to the nodes. The nodes
attach to a BOINC project through a
BOINC client application. The Internet
can provide the communication path be-
tween the nodes and the BOINC server.

Let’s Start
Note that this article will not cover the
security aspects of the configuration,

which may vary depending on your
network and the policies of your organi-
zation. Beside the next steps are based
on a Gentoo Linux system. Nevertheless
the procedures should be similar for
other Linux distributions.

The BOINC server requires some pack-
ages that are part of most Linux distribu-
tions. Apache, PHP, and Python provide
the user interface and the message pass-
ing system. A MySQL database is the
backbone of the grid management tasks.
During the installation of these manda-
tory tools, it is important that the cross
package facilities are respected (e.g.,
mysql python facility).

[root] $ USE="mysql php xml" U
emerge -avt python apache mysqlU
php mysql-python pecl-pdo-mysql

To activate the PHP module, the option
-D PHP5 has to be present in the /etc/
conf.d/apache2 configuration file. (PHP4
is also fine.) In order to check if the
Apache PHP module is loaded correctly,
a small PHP script (Listing 1) will report
which PHP version is available.

Next, the user boincadm has to be cre-
ated on the server. This user is responsi-
ble for executing the grid management
tasks. The user should be in the same
group as the Apache web server
(apache) to simplify the configuration.

If the MySQL database is not running
already, you can initialize and started it
with the following commands as root.

$ mysql_install_db
$ /etc/init.d/mysql start
$ /usr/bin/mysqladmin -u root U
 password 'mysqlpwd'

The user boincadm must have sufficient
rights to access the database and create
a new database. There are different pos-
sibilities for allowing database adminis-
tration, but some SQL commands will
also do the job.

$ mysql -u root -p
mysql> GRANT ALL ON *.* U
 TO 'boincadm'@'localhost';
mysql> SELECT * FROM mysql.userU
 WHERE user='boincadm';

The server backend software packages
are now ready for BOINC.

Compiling BOINC
To get the sources, you can invoke a cvs
checkout as user boincadm. The check-
out will download the BOINC client soft-
ware, the server applications, and some
tools for simplifying the creation and
administration of BOINC projects.

$ cvs -d :pserver:anonymous:U
 @alien.ssl.berkeley.edu:U
 /home/cvs/cvsroot checkout -r U
 boinc_core_release_5_3_31 boinc

The bundled configuration scripts _auto-
setup and configure will set up the
source tree for compilation. A simple

01 <?php

02 echo 'Hello world!';

03 phpinfo();

04 ?>

Listing 1: hello.php

Figure 1: BOINC infrastructure with a centralised BOINC server managing the grid.

KNOW-HOWBOINC

47ISSUE 71 OCTOBER 2006W W W. L I N U X- M A G A Z I N E . C O M

make will do the rest. In some cases,
it may be necessary to install some
libraries to resolve all dependencies
and get the sources compiled. If unmet
dependencies are encountered during
the build, refer to the BOINC build de-
pendency list, which is available on the
official BOINC website[3].

$ cd boinc
$./_autosetup
$./configure --enable-server U
 --disable-client --without-x
$ make

Invoke the sanity script to check if the
crucial BOINC parts are set up correctly.

$./test/test_sanity.py

Creating a Project
Structure
Before you can send jobs to the nodes,
you must create a project.

$./tools/make_project U
--delete_prev_inst --user_name U
boincadm --drop_db_first U
--project_root U
$HOME/projects/test_setup U
--key_dir U
$HOME/projects/test_setup_keys U
--url_base U
http://boinc.tuxindustry.lu/ U
--db_user boincadm test_setup

After the project test_setup is created,
the console will prompt with some
messages to update the Apache con-
figuration. This information is used to
access the project through a web
browser and the BOINC clients. You can
adjust the user rights for the project with
chmod.

$ cd $HOME/projects/test_setup/
$ cat test_setup.httpd.conf >> U
 /etc/apache2/httpd.conf U
 # as root
$ /etc/init.d/apache restart U
 # as root
$ chmod -R a+r ~/projects/

The project is now available and can
be accessed through a web browser. The
target url is defined through the Apache
alias settings (e.g., http:// boinc.
tuxindustry. net/ test_setup). If the server
has to be hardened, the chmod, key
paths, and Apache settings should be re-
viewed; otherwise, the defaults are just
fine. You can omit the cron entries at this
point to simplify debugging.

User Creation
An advantage of the BOINC grid is its
dynamic scalability. This includes auton-
omous user (node) management, reduc-

ing the administrative tasks. The default
project settings disable the user creation
through the project web interface. To
enable this feature, you must adjust the
config.xml file, located in the project root
directory. Toggle the tag entry <disable_
account_creation> from 1 to 0.

The phpmailer package will help
you ensure seamless user creation.
Download phpmailer from the http://
phpmailer. sourceforge. net website and
install it in the php.inc extensions path.
This small extension allows the project
server to send information to the users
registering with BOINC. You can config-
ure this emailing facility by adding some
lines to the php project file project.inc.
This file is located in the html/project di-
rectory of the BOINC project (Listing 2).

Adding an Application
After creating an account through the
web interface, it is time to add an appli-

01 ...

02 define("EMAIL_FROM" ,
"boincmaster@tuxindustry.
net");

03 $USE_PHPMAILER=true;

04 $PHPMAILER_HOST=
 "smtp.tuxindustry.net";

05 $PHPMAILER_MAILER="smtp";

06 ...

Listing 2: html/ project/
project.inc

01 <boinc>

02 <platform>

03 <name>i686-pc-linux-gnu</name>

04 <user_friendly_name>Linux/x86</user_friendly_name>

05 </platform>

06 <app>

07 <name>uppercase</name>

08 <user_friendly_name>Linux Magazine sample application</user_
friendly_name>

09 </app>

10 </boinc>

Listing 3: ./ project.xml

01 <file_info>

02 <number>0</number>

03 </file_info>

04 <workunit>

05 <file_ref>

06 <file_number>0</file_number>

07 <open_name>in</open_name>

08 <!-- open_name is the name of the input file used by the
application -->

09 </file_ref>

10 <delay_bound>600</delay_bound>

11 <!-- An upper time bound (seconds) between sending a wu to a client
and receiving a reply -->

12 </workunit>

Listing 4: ./ templates/ wu_uppercase

BOINCKNOW-HOW

48 ISSUE 71 OCTOBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

cation that will be executed by the
nodes. The BOINC sources include an
app directory, where some sample appli-
cations are located.

The sample application uppercase,
which will serve as an example in this
article, transforms all the characters
of an ordinary ASCII file into upper
case. The input dataset must have
the filename in, and the correspon-
ding output filename is out. This appli-
cation can also be started without a
BOINC client, which can help during de-
bugging.

Copy the application into the project
app/uppercase directory. APPNAME_
VERSMAJOR.VERSMINOR_PLATFORM
defines the naming convention. The ver-
sion indicates which BOINC clients can
execute the application. Only the major
version is responsible to identify the
client. (In the example below, a client
with the version 5.4.9 could execute the
application.) Due to the fact that the
BOINC clients can run on a Windows,
Mac OS X, or GNU Linux machine, it is
also necessary to indicate the target
platform. (You’ll find platform naming

conventions at http:// boinc. berkeley. edu/
platform. php.)

$ cd apps && mkdir uppercase &&
$ mv ~/boinc/apps/upper_case U
 uppercase_5.0_i686-pc-linux-gnu

Now create the project.xml file (Listing
3) in the project root directory and final-
ize the “application add” workflow
through executing the project commands
./bin/xadd and ./bin/update_versions.

Adding a Work Unit
Before the nodes can start to execute the
application and process some data, it is
necessary to create a work unit (WU). A
WU defines the application and dataset
that has to be executed and processed
by the client. Work units are described
through a work unit template and a
result template. The work unit template
(Listing 4) describe the input dataset ref-
erence (in this case, the filename in) on
the target node. The result template
(Listing 5), on the other hand, describes
the result dataset reference (the result

01 <file_info>

02 <name><OUTFILE_0/></name>

03 <generated_locally/>

04 <upload_when_present/>

05 <max_nbytes>10000000</max_
nbytes>

06 <url><UPLOAD_URL/></url>

07 </file_info>

08 <result>

09 <file_ref>

10 <file_name><OUTFILE_0/></
file_name>

11 <open_name>out</open_name>

12 <!-- open_name identifies
the filename of the
application result file -->

13 </file_ref>

14 </result>

Listing 5: ./ templates/ re_uppercase

Advertisement

KNOW-HOWBOINC

filename out). You can created both tem-
plates in the templates/ directory.

After creating the template files, copy
the text file containing the text you will
alter to upper case into the download di-
rectory. Everything is now prepared for
the arrival of a work unit.

Inserting a Work Unit
Each work unit is identified by a unique
ID, which is managed by the BOINC
server and the database. The tool create_
work is used to pass work to the grid.

./bin/create_work
-appname uppercase U
-wu_name wu_uppercase_01 U
-wu_template templates/
wu_uppercase.xml U
-result_template templates/U
re_uppercase.xml U
-min_quorum 1 U
-target_nresults 1 U
text.txt

The WU has the name wu_uppercase_01,
which is stored like all the other options
in the test_setup database. The argument
min_quorum defines how many returned
results must be equivalent to have a WU
validated. The target_nresults must be at
least equal to the min_quorum. The last
argument test.txt defines the data set on
which the WU should be applied. The
data file must be present in the down-
load directory. After creating the WU, a

new subdirectory is created in down-
load/, containing the dataset, which will
be passed to an idle node that can be al-
located by the BOINC server.

Keep in mind that the BOINC sources
also provide an API to create work units
and to insert them into the grid.

Starting the Daemons
The BOINC server management tasks are
performed by the so-called BOINC server
daemons and server side queues. The
daemons typically fill the queues and
use them to trigger management tasks.
Examples of the daemons include:
• feeder – makes sure that the nodes get

some work;
• transitioner – handles the transition

state of the sent workunits and re-
ceived results;

• file_deleter – deletes the input and re-
sult files following defined policies;

• sample_dummy_validator – checks if
the results sent by the nodes are valid;

• sample_dummy_assimilator – checks
if there was a valid result for the work
units or if the work unit resulted in an
error.

The simplified descriptions of the dae-
mons should be sufficient to visualize
the BOINC server work unit flow. (Check
the BOINC wiki to get a detailed descrip-
tion [4]). The daemons can be found in
the project bin/ directory and must be
added to the project configuration file
config.xml (Listing 6).

After updating the project configura-
tion, you can start the BOINC server
with ./bin/start. The server state can be
fetched with http:// boinc. tuxindustry.lu/
test_setup/ server_status. php and is up-
dated about every 10 minutes.

Attaching a Node
The server is now ready and waits for
the clients to connect. Download a
BOINC client with a number reflecting
the uppercase application naming con-
vention.

You’ll find the client in the Download
BOINC section of the test_setup project
web page. The client application will ask
for a project to attach to, which is http://
boinc. tuxindustry. lu/ test_setup in this
case, and a valid email/ password pair to
authenticate.

$ sh U
boinc_5.*.*_i686pclinuxgnu.sh

$ cd BOINC
$./run_manager U
start the client

After some idle time on the grid node,
the client will start to download the
WU and will upload the result to the
server. Take a look at the client messages
to see the client downloading the upper-
case application and uploading the re-
sult.

If the WU is processed correctly, your
credit will rise. You can check your
credit in the Your account section on the
project web page.

In order to get some feedback during
work unit dispatching and processing it
can be of interest to check the server
side logs. They can be found in the log_
boinc directory located in the test_setup
project home directory. On the client
side the BOINC application creates direc-
tories dedicated to the attached projects.
These directories will contain the work
units (application, description and data
sets) which will be processed by the
node.

Conclusion
Finally, you have a basic BOINC grid
running. Now you can start to imple-
ment your own applications and scale
the grid with more nodes. This article
was only a brief introduction, but it
should simplify the steps to getting a
first test server up running. I hope you
enjoyed this short trip to the futuristic
world of distributed computing. ■

[1] Search for Extra Terrestrial Intelli-
gence (SETI@home):
http:// setiathome. berkeley. edu

[2] Berkeley Open Infrastructure for Net-
work Computing:
http:// boinc. berkeley. edu

[3] Build dependencies:
http:// boinc. berkeley. edu/ build. php

[4] The unofficial BOINC Wiki:
http:// boinc-wiki. ath. cx/

INFO

01 <boinc>

02

03 <daemons>

04 <daemon><cmd>feeder -d
3</cmd></daemon>

05 <daemon><cmd>transitio
ner -d 3</cmd></daemon>

06 <daemon><cmd>file_
deleter -d 3</cmd></daemon>

07 <daemon><cmd>sample_
trivial_validator -d 3 app
uppercase</cmd></daemon>

08 <daemon><cmd>sample_
dummy_assimilator -d 3 app
uppercase</cmd></daemon>

09 </daemons>

10 ...

11 </boinc>

Listing 6: ./ config.xml

Marc Seil is a research engineer
working at the “Centre de Recher-
che Public Henri Tudor – CR SAN-
TEC” in Luxembourg. His research
domain is dedicated to technology
in the medical field. He can be con-
tacted at marc.seil@tudor.lu.T

H
E

 A
U

T
H

O
R

BOINCKNOW-HOW

50 ISSUE 71 OCTOBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

