SYSADMIN

etfilter is the Linux kernel sub-
N system behind firewall tools

such as the famous Iptables.
The Netfilter subsystem provides the
structure for packet filtering and address
translation by offering a series of hooks
into the network protocol stack.

You can find many commands, scripts,
and front-end applications for accessing
the Netfilter subsystem - including tools
such as Shorewall and Firestarter, as
well as the native Iptables — so you don’t

64 ISSUE 71 OCTOBER 2006

Singwall

have to be a pro-
grammer to access the
powers of Netfilter.
However, if you are
ready for a little pro-
gramming, you can use the
built-in Netfilter hooks to create
your own custom firewall modules.

This article takes you through the
steps of building a custom Netfilter mod-
ule. The discussion focuses on the exam-
ple of a “singing” firewall that plays a
sound whenever a packet arrives, how-
ever, the concepts in this article also
applies to your own creative uses of the
Netfilter subsystem.

A Singing Firewall

Firewall log entries keep administrators
up to date on data packets, but from a
physiological and psychological point of
view, peering at log files all day can be-
come tedious, and important informa-
tion can get lost. Of course, you’ll need
the log files anyway, but why not have a
secondary alert system?

WWW.LINUX-MAGAZINE.COM

Building a Netfilter firewall module

SINGING
LESSON

We’ll show you how to build your own Netfil-

ter extension with this example of a musical

firewall. BY MARK VOGELSBERGER

The Singwall module described in
this article provides a means for the
admin to listen to network traffic in real-
time. Singwall is a singing firewall exten-
sion for Netfilter. The firewall chirps
when a packet arrives, and the pitch of
the sound varies depending on the port
number addressed by the packet.

Hooked

The Netfilter model lets developers pro-
gram kernel modules that hook into the
chain of execution for network packets.
The first task the module needs to han-
dle is registering a hook. This registra-
tion tells the kernel what the module
wants to do. Registration is managed
through two appropriately named func-
tions: nf_register_hook(struct nc_hook_
ops*) and nf_unregister_hook(struct nc_
hook_ops*). The latter function removes
the hook. It is important to unload the
module, as failure to do so could cause
fairly messy kernel errors. The crystalli-
zation point for registering a hook is the
nc_hook_ops structure:

struct nf_hook_ops {
struct Tist_head Tist;
nf_hookfn *hook;
struct module *owner;
int pf;
int hooknum;
int priority;

g

This structure provides all the informa-
tion the kernel needs to deploy the hook.

The first entry in the structure is for
management in a linked list. The hook
function itself is stored as a pointer in
hook. The Linux kernel uses this hook
function pointer later to call the kernel
module. The owner entry stores the cor-
responding module; this entry is also
found in numerous other kernel struc-
tures.

Choosing a Protocol

The last three entries in the nc_hook_ops
structure are of particular interest: pf
specifies the protocol family (OSI net-
work layer) the hook is interested in.
linux/socket.h contains a list of possible
pf values.

The PF_INET value is reserved for
Ipv4, because the Ipv4 protocol system
is the network protocol used by the Sing-
wall module. The hooknum value speci-
fies the position where the hook latches
in. Hooks are numbered, and a macro
assigns names to them. The possible val-
ues for IPv4 are listed in linux/netfilter_
ipv4.h.

We want the singing firewall to make
a different noise for different incoming
and outgoing packet types. Two hooks -
hooknum = NF_IP_LOCAL_OUT for out-
going packets and hooknum = NF_IP_
LOCAL_IN for incoming packets — will
handle this.

The last entry in the nf_hook_ops
structure specifies the priority with
which the kernel should insert the new
hook into the list of existing hooks. Net-
filter processes hooks based on their pri-
ority. The priority values for IPv4 are
also detailed in linux/netfilter_ipv4.h.
We can assign a value of priority = NF_
IP_PRI_FIRST for the Singwall to put the
hook at the top of the list.

Arguments

A hook prototype, or the hook function
to be more precise, is defined in linux/
netfilter. h:

typedef unsigned int nf_hookfn(
unsigned int hooknum,
struct sk_buff **skb,
const struct net_device *in,
const struct net_device *out,
int (*okfn)(struct sk_buff *)
)

The critical argument, and in fact the
only relevant argument for Singwall, is

second on the list: skb. This argument is
a pointer to a sk_buff structure (a socket
buffer). The kernel uses this critical net-
work data structure to transfer data effi-
ciently between the individual network
layers.

Packet Analysis

The packet analysis we want the singing
firewall to perform can be handled using
the socket buffer. The complex sk_buff
structure is provided by linux/skbuff.h.
This structure uses a data pointer to
point to the network data and extracts

a variety of management information.
In the case of TCP data, the firewall first
extracts the TCP header, which in turn
gives the firewall the ability to extract
the port number.

The hook’s return values specify what
kind of post-processing actions to apply
to the packets. The return values, which
are listed in linux/netfilter.h, include set-
tings such as NF_DROP and NF_ACCEPT.
NF_DROP drops the packet after process-

Singwall SYSADMIN

ing, whereas NF_ACCEPT lets the packet
through. This arrangement makes it
quite easy to write a minimal firewall.

If the filter does not like the looks of the
packet it has just inspected, the hook re-
turns NF_DROP, and the kernel takes
care of the dirty work. The singing fire-
wall always returns NF_ACCEPT, as it
simply analyzes the network data with-
out filtering them.

Opus 1

As an overture, let’s ask Singwall to tag
UDP, TCP, and ICMP packets with tones
of different pitches. In case of TCP, a sec-
ond tone will indicate the port, and thus
will tell us the underlying service based
on analysis of the TCP header.

The tcphdr structure stores the header
data. To extract the port number, Sing-
wall reads the dest field. The value first
has to be converted to the machine’s
byte order. The ntohs(unsigned short int
netshort) function handles this, return-
ing the port number as an integer. The

incoming

others ICMP

network data
i—‘ l Investigate protocol
UDP

TCP

L

frequency in write
ring buffer

200 300

100 frequency value

i

=

identify service
SSL

FTP S HTTP
frequency in
write ring buffer
1000 1500 2000 2500 frequency value
Y l l l l
end of analysis

Figure 1: The kernel uses a Netfilter hook to pass incoming packets to Singwall. The module
analyzes the protocol, calculates a frequency, and writes the results to a ring buffer.

WWW.LINUX-MAGAZINE.COM

ISSUE 71 OCTOBER 2006 G5

SYSADMIN

packet analysis process is shown in
Figure 1.

A problem at the hardware/human
interface prevents a straightforward im-
plementation. Network traffic is typically
so fast that the human ear would not be
able to register the individual beeps. To
slow things down, Singwall implements
a ring buffer with a length of RING_SIZE.
The hook fucn writes the tones to play to
this buffer.

Two counters store the position of the
next tone to be played (tone_counter)
and the position of the next free entry
(tone_pos_counter). If network packets

Listing 1: Singwall

001 #include <1inux/version.h>
002 #include <linux/module.h>
003 #include <1inux/kernel.h>
004 #include <linux/netfilter.h>

005 #include <Tlinux/netfilter_
ipv4.h>

006 #include <linux/init.h>
007 #include <linux/tcp.h>

008 finclude <asm/io.h>

009 #include <linux/inet.h>
010

011 #if LINUX_VERSION_CODE >=
KERNEL_VERSION(2,6,16)

012 #include <linux/in.h>

013 #include <linux/ip.h>

014 #endif

015

016 #define RING_SIZE 500

017 4tdefine SYNC_RANGE 100

018 MODULE_LICENSE("GPL");

019

020 static wait_queue_head_t wgq;
021 static int thread_id;

022 static DECLARE_COMPLETION(Con_
exit);

023

024 static struct nf_hook ops
nfho_out,nfho_in;

025

026 ul6 tone[RING_SIZE];
027 int tone_counter;

028 int tone_pos_counter;
029

030 void update_tone pos_

66 ISSUE71 OCTOBER 2006

Singwall

arrive so quickly that the tone_pos_coun-
ter and tone_counter become unsynchro-
nized by more than the RANGE_SYNC
value, the code resynchronizes, setting
tone_pos_counter to the value of tone_
counter.

The ring buffer is shown in Figure 2a.
This approach ignores many packets in
case of heavy traffic, but as field tests
show, ignoring packets does not
necessarily mean you will miss hearing
any connections.

The singing firewall implementation
we have looked at thus far had no trou-
ble following a normal web surfing ses-

counter(void) {

031 if(tone_pos_counter<RING_
SIZE-1)
tone_pos_counter++;

032 else tone_pos_counter=0;
033 }
034

035 void update_tone_
counter(void) f{

036 if(tone_counter<RING_SIZE-
1) tone_counter++;

037 else tone_counter=0;
038 }

039

040 void check_syncing(void) {
041 int counter;

042 if ((abs((tone_pos_counter
- tone_counter+
RING_SIZE)

043 % RING_SIZE))>SYNC_
RANGE)

044 |
045 counter=tone_counter;
046

047 while (((abs((counter -
tone_counter+
RING_SIZE)

048 % RING_
SIZE))<=SYNC_RANGE))

049 {

050 tonel[(counter%RING_
SIZE)-11=0;

051 counter++;

052 pr_debug(" %d
", (counter%RING_SIZE)-1);

053 }

WWW.LINUX-MAGAZINE.COM

sion. Although ping 127.0.0.1 -f or mass
downloads led to multiple resyncs, this
did not spoil the sing-along session.

Singwall uses the PC speaker to output
tones. The code tells the speaker to
squawk at the required frequency (al-
though we have had a few issues with
mute speakers on newer hardware). We
decided on a tone length of 20 millisec-
onds - this is a compromise between
audibility and fast handling, which is
important to avoid missing more packets
than necessary.

Of course, we need to avoid a situ-
ation where the firewall is blocking the

054 pr_
debug("SingingFirewall:
Resyncing %d<---%d!\n",

055 tone_counter,tone_pos_
counter);

056 tone_pos_counter=tone_
counter;

057 }
058 }
059

060 static int thread_code(void
*data) {

092 }

093

094 unsigned int hook_func(

095 unsigned int hooknum,

096 struct sk_buff **skb,

097 const struct net_device
*in,

098 const struct net_device
*out,

099 int (*okfn)(struct sk_buff
#))

100 {

101 struct tcphdr *thead;
102 struct sk _buff *sk=*skb;
103 ul6 port;

104 char check;

105

106 check=0;

107 if (sk->nh.iph->protocol ==
IPPROTO_TCP)

network traffic while it outputs a 20 mil-
lisecond tone. A kernel thread that pro-
cesses the ring buffer and outputs the in-
dividual tones provides the parallelism
we need to ensure that the traffic will
continue without interruption. The
thread includes a while() loop that runs
every 10 milliseconds. This example
does this without locking between paral-
lel actions - in the worst case, the fire-
wall might miss a few tones, or trip up
over its own toes, which is acceptable
from a musical point of view.

The thread, and thus the infinite loop,
both stop when the module is unloaded.

108 {tone[tone_pos_
counter]=100; check=1;}

109 if (sk->nh.iph->protocol ==
IPPROTO_UDP)

110 {tone[tone_pos_
counter]=200; check=1;}

111 if (sk->nh.iph->protocol ==
I[PPROTO_ICMP)

112 {tone[tone_pos_
counter]=300; check=1;}

113 if (lcheck) return NF_
ACCEPT;

114
115 update_tone_pos_counter();
116 check_syncing();

117 pr_debug("Tone Pos Counter:
sd\n",
tone_pos_counter);

118
119 check=0;

120 if (sk->nh.iph->protocol ==
IPPROTO_TCP) {

121 thead=(struct tcphdr *)
(sk->data + (sk->nh.iph->ihl
A4

122 port=ntohs(thead->dest);

123 switch(port)

124 {

125 case 21 : {tone[tone_

pos_counter]=1000;check=1;bre
ak;}
126 case 22 : {tone[tone_

pos_counter]=1500;check=1;bre
ak;}

127 case 80 : {tone[tone_
pos_counter]=2000;check=1;bre

Figure 2b shows how the hook function
and the threads cooperate to handle the
ring buffer.

Let the Music Play!

Listing 1 implements the concepts I just
described. The module needs two in-
clude files on kernel version 2.6.16 or
newer. The if block in Lines 11 through
14 takes care of including these addition-
al files. The module then goes on to the
define values for ring buffer manage-
ment: RING_SIZE and SYNC_RANGE.
These values can be modified to reflect
your own requirements.

ak;}

128 case 443: {tone[tone_
pos_counter]=2500;check=1;bre
ak; !}

129 }

130

131 if (check) {

132 update_tone_pos_
counter();

133 check_syncing();

134 pr_debug("Tone Pos

Counter: %d\n",
tone_pos_counter);

135 }

136}

137 return NF_ACCEPT;
138 }

139

140 int init_module() {
141 int counter;

142 for (counter=0;
counter<=RING_SIZE-1;
counter++)

143 tonelcounter]=0;

144 tone_counter=0;

145 tone_pos_counter=0;

146

147 init_waitqueue_head(&wq);

148 thread_id=kernel_
thread(thread_code, NULL,
CLONE_KERNEL);

149 if(thread_id==0) return -
EI0;

150

151 nfho_out.hook = hook_

WWW.LINUX-MAGAZINE.COM

Singwall

SYSADMIN

If the DEBUG macro is defined when
you launch the compiler, the system will
output messages in /var/log/messages.
Note that the module will log the values
for tone_counter and tone_pos_counter,
thus creating an enormous number of
messages in the logfile. This log data is
useful for debugging, as it shows you
how the module synchronizes the ring
buffer if it can’t keep up with network
traffic.

The module’s init routine (in Line
140) first sets the two ring buffer coun-
ters to zero. init then goes on to launch
the thread, including queues (Lines 147

Listing 1: Singwall

func;

152 nfho_out.hooknum = NF_IP_
LOCAL_OUT;

153 nfho_out.pf = PF_INET;

154 nfho_out.priority = NF_IP_
PRI_FIRST;

155

156 nfho_in.hook
func;

157 nfho_in.hooknum
LOCAL_IN;

158 nfho_in.pf

159 nfho_in.priority
PRI_FIRST;

160

161 nf_register_hook(&nfho_
out);

162 nf_register_hook(&nfho_in);
163 return 0;

164 }

165

= hook_
= NF_IP_

= PF_INET;
= NF_IP_

166 void cleanup_module() f

167 if(thread_id) kill_
proc(thread_id, SIGTERM, 1);

168 wait_for_completion(&on_
exit);

169 nf_unregister_hook(&nfho_
in);

170 nf_unregister_hook(&nfho_
out);

171 outb(inb_p(0x61) & OxFC,
0x61);

172 }

ISSUE 71 OCTOBER 2006 67

SYSADMIN Singwall

Ring buffer

tone_counter

less RANGE_SYNC

tone_pos_counter

Figure 2a: The hook function stores the pending tones in a ring buffer. Before the buffer

overflows, resync drops some data.

through 149). Finally, the hook is regis-
tered for incoming and outgoing packets
and IPv4. The cleanup routine in Lines
166 reverts these steps, cleanly removing
the module from the kernel. Just to be
on the safe side, Line 171 contains a
special command that disables the PC
speaker.

Protocol Checker
The hook function (Lines 94 through
138) checks the protocol, based on the
sk- > nh.iph- > protocol entry in the
socket buffer passed to it (Lines 107
through 112). If Singwall recognizes the
protocol, it sends a frequency to the ring
buffer (Line 115).

If the packet is a TCP packet, Lines
120 through 136 generate a second fre-
quency to match the port number. If you

like, you can add more services to the
port list.

The update_tone_pos_counter() (Line
30) and update_tone_counter() (Line 35)
functions take care of updating the coun-
ters. The check_syncing() function (Line
40) synchronizes the two pointers. Using
a function to do this may not be particu-
larly elegant, but this solution works
well, is stable, and clearly delegates re-
sponsibilities.

The makefile in Listing 2 helps to
build the module in next to no time, and
entering the insmod singwall. ko as root
will load the module into the kernel. The
singing firewall then immediately
launches into its concert program, actu-
ating the PC loudspeaker in harmony
with the network traffic. As predicted,
the pitch reflects the nature of the data.

tone_pos_counter

hook_func()

Ring buffer

tone_counter

thread_code()

Figure 2b: While the hook function fills the ring buffer with entries, a parallel kernel thread
reads the data and plays the tones on the PC speaker.

68 ISSUE 71 OCTOBER 2006

WWW.LINUX-MAGAZINE.COM

Listing 2: Makefile

01 01

02 {fDebug messages?

03 02

04 fFEXTRA_CFLAGS+=-DDEBUG
05 03

06 04

07 ifneq ($(KERNELRELEASE),)
08 05

09 obj-m := singwall.o
10 06

11 else

12 07

13 KDIR := /1ib/modules/
$(shell uname -r)/build

14 08
15 PWD
16 09
17 10
18 all:
19 11

20 $(MAKE) -C $(KDIR)
SUBDIRS=$(PWD) modules

21 12
22 endif

:= $(shell pwd)

It is quite easy to distinguish between
encrypted and clear text web pages, for
example. The tone for HTTPS connec-
tions is higher than the tone for unen-
crypted websites, and the difference

is easy to detect, even if you have no
musical training. You'll also find that it
is easy to distinguish between SSH and
FTP packets.

If you remove the comment tags in
Line 2 of the makefile, you can build the
module in debug mode. Running the
module in debug mode will give you
thousands of logfile entries - useful for
troubleshooting, but no use at all in nor-
mal operations.

Enjoy the concert, and if you grow
weary of the song coming from the PC
speaker, just run rmmod singwall to
mute the singer. M

[1] Neftfiter: http://www.netfilter.org

[2] Downloads:
ftp//ftp.linux-magazine.com/
Magazine/Downloads/71/Singwall

