
Zack’s Kernel News

The Linux kernel mailing list
comprises the core of Linux
development activities. Traffic
volumes are immense, often
reaching 10,000 messages in a
week, and keeping up to date
with the entire scope of
development is a virtually
impossible task for one person.
One of the few brave souls to
take on this task is Zack Brown.

 Zack Brown

Zack’s Kernel News
Chronicler Zack Brown

reports on the latest

news, views, dilemmas,

and developments

within the Linux kernel

community. By Zack Brown

selected group of features, to make it as
small as possible.

For this, Arnaldo Carvalho de Melo sug-
gested a standard-format

make ‑C tools/perf menuconfig

command, to configure perf in the same
way that the kernel itself was configured.
Everyone seemed to be on board with this,
and Hitoshi said he’d get right on a fresh
patch – modulo requirements of his day job.

Memory Management For
Swapless Systems
Sometimes an idea goes nowhere, but it’s
still interesting to think about.

John Stultz wanted to make some im-
provements to anonymous memory man-
agement on swapless systems. As he
pointed out, anonymous memory was
tracked in the kernel on two lists: one for
active pages, and one for inactive pages.
The way things stood, it would be straight-
forward to migrate inactive pages into swap
if need be.

John’s issue was that on swapless sys-
tems, the distinction between the active and
inactive list became more vague, and the
usefulness of both became more murky.
The way it worked currently, active pages
would sometimes migrate to the inactive
list, but because there was no swap space to
go to from there, they’d just sit pointlessly
on the inactive list.

John’s idea was to just skip that whole
process. On systems without swap, active
pages would just stay in the active list, and
never migrate. That seemed like a much
more simple and straightforward approach
to him, and he posted a patch to accomplish
it.

Minchan Kim replied that he’d tried to
submit a similar patch long before, but that
Rik van Riel had rejected his code. Accord-
ing to Minchan, Rik had said that the idea
could work fine for truly swapless systems,
but that a system could appear to be swap-
less, just because it didn’t have any swap
enabled; in which case, if Minchan’s (or
John’s) patch were in place, all of a sudden

Benchmarking Futexes
Hitoshi Mitake forked some code that had
been originally written by Darren Hart and
Michel Lespinasse and produced a new per-
formance-testing subsystem that he submit-
ted as a patch, to be added to the perf bench
code in the kernel. Hitoshi’s subsystem was
specifically oriented toward benchmarking
futexes, a low-level locking mechanism.

The whole reason for kernel locks is to
allow multiple users to access the same
hardware resources on a given system. A re-
source is locked and released so quickly and
so frequently that the system appears to be
performing multiple user tasks at the same
time. But locks also take CPU time away
from the processes they’re regulating. With
so many locks closing and opening at all
times, there’s tremendous value to making
the locking code itself as efficient as possi-
ble.

Darren, who was still maintaining his fu-
textest test suite, on which Hitoshi’s code
was based, had some concerns. He didn’t
mind seeing his code get merged into perf,
because that would necessarily give it a
much wider audience, more testing, and all
the usual benefits of code that’s accepted
into the kernel, but he said he was still ac-
tively modifying futextest and didn’t want
to have a plethora of similar-but-different
tests appearing in perf. He also thought
there were definitely some parts of futex-
test that would not be a good fit to be
added to the perf code in the kernel.

Hitoshi said he’d only intended to port
the code he’d already taken, but he felt that
other parts of futexttest would be valuable
to include in perf’s tools/ directory because
they were useful on their own and were
good examples of futex usage. He also felt
that by including the code in the kernel, it
would produce a statically linked binary,
which would be better for embedded sys-
tems folks.

Darren was open to this, and Ingo Molnár
also gave his OK, but he pointed out that if
embedded systems people wanted a smaller
binary, it would be better to include the
functionality directly into the perf binary
and just allow perf to be built with a user-

October 2012	 Issue 143	 linux-magazine.com | Linuxpromagazine.com	92

Community Notebook
Kernel News

the logic would be broken if that system decided to enable swap. So, that was that.
But, it’s really cool that people like John are exploring the kernel, learning its intrica-
cies, and looking for ways to smooth it out and make it better.

Leap Seconds
Before the June 30th “leap second,” Richard Cochran submitted some code to help
the kernel deal with it correctly. According to Richard, Posix UTC was simply a flawed
design that could never be implemented usefully. Apparently, at the time when the
Posix standard was being devised, computer clocks weren’t accurate enough for the
relevant issues to be obvious to the standards folks.

After correcting an early flawed definition of Posix UTC leap years, the standard
has still suffered from problems that have become more and more significant as com-
puter clocks have become more accurate. To accommodate Posix, the Unix imple-
mentations of the world have had to become more complex. The ideal solution, ac-
cording to some, would be a better standard that takes into account modern time-
keeping issues; however, that would apparently involve a massive, world-wide transi-
tion effort, not to mention backward compatibility issues.

The easier solution, as Richard proposed, would be to treat UTC time as a feature
that the kernel could provide if requested. This is actually a sort of standard way
Linux gets around Posix compliance issues in general – it provides the Posix interface
as required, but has a whole different set of interfaces for people who *really* want
to get things done the right way. I believe some aspects of Linux process threading
get around Posix this way as well.

In Richard’s patch, the kernel would implement its own internal timekeeping, cor-
rectly handling leap seconds, leap minutes, leap days, leap years, leap centuries, leap
millennia, leap eternities, and so on. Then, for any process that requested UTC time,
the kernel would just apply the offsets it had recorded and produce the UTC time on
demand. This way, the kernel would not have to monitor for leap seconds con-
tinuously, or set up timers, or use other awkward constructions.

One interesting topic that came up during the discussion is the way
Google handled the leap second issue on its servers. According to a
company blog entry, they implemented a “smearing” function,
whereby the kernel would just lengthen or contract its time report-
ing by very tiny increments, until the leap second had been accom-
plished. In this way, applications would continue to function, and
the time adjustment would occur when needed.

The problem with this approach, as the blog entry affirms, is
that it results in inaccurate time reporting. For Google’s pur-
poses this inaccuracy was unimportant, but for a general-pur-
pose operating system like Linux, there’s a greater need to re-
ally nail down accurate time reporting.

So, although some kernel developers advocated the Google
approach as a relatively elegant workaround, it wasn’t taken
seriously as something that might actually be adopted into
the kernel.

The discussion got pretty technical at a certain point, mainly
between John Stultz and Richard, as they hammered out the details
of Richard’s implementation and what it would accomplish. I personally
love these Y2K-esque issues when they come up. They’re so crazy. The
deeper you dig, the crazier they seem, and the more amazing the de-
velopers seem for being able to fathom all the nuances. nnn

linux-magazine.com | Linuxpromagazine.com	 Issue 143	 October 2012 93

Community Notebook
Kernel News

