
In this case, the system must examine
not only the keys but also the actual val-
ues stored before it can insert a value. If
there were several hundred or thousand
overlapping keys, this would be equiva-
lent to traversing a major portion of the
array every time you tried to insert a
new entry.

Simply put, you could send an HTTP
POST request to a web server with 1,000
entries that would then take several min-
utes to process (basically bringing the
web server to its knees). Two main strat-
egies are available to deal with this prob-
lem. The first is to limit the number of
inputs; this works well for things like
HTTP POST requests, but it will not
work for data arrays within a program-
ming language.

The second method is to add some
randomness to the hash functions,
meaning they are still internally deter-
ministic but, externally, are resistant to
attacks. For example, if you add a ran-
dom value between one and a million,
your attacker would have to guess this
value before finding a list of values that
would then result in the same hash
value. By changing the secret key every
time an array is created, it basically be-
comes impossible for attackers to exploit
this issue. Or does it?

Several applications use MurmurHash
[2], which is pretty good and is in the
public domain. But, it is not crypto-
graphically secure. In short, it works
most of the time until someone actively
attacks it, which is exactly what Jean-
Philippe Aumasson and Martin Bosslet
demonstrated at the 2012 Chaos Com-
puter Conference [3].

Another example of a weak hash is
Btrfs. It uses CRC32 by default, for

M
any data types and structures
exist – from simple strings
and integers to multi-dimen-
sional arrays. One of the

most common and useful types is the
simple growable array that can contain
an arbitrary number of elements. You
can basically put data in, look it up, and
remove it as needed; this structure is
also referred to as a one-dimensional
array. Often, you can also insert an array
as a data element into an existing array,
giving you a multi-dimensional array
that lets you do things like create a “cus-
tomer” array with a number of elements

containing a cus-
tomer name,

phone
number,
and so
forth.

About
Arrays
Arrays
typically
have three
major op-
erations:

inser-

tion (adding elements), lookups (reading
a value), and removing elements. There
are a number of ways to structure the
data in memory, and various strategies
can be used to optimize operations on
the array. A simple linked list, for exam-
ple, makes it easy to add an element to
the beginning or end of an array but ex-
pensive to insert an item into the middle,
because it must search the array for the
appropriate location. In general, most
programming languages that provide
well-formed data array structures, such
as Perl, Python, Ruby, and so forth, do a
pretty good job.

The most common strategy is to create
a key based on the data (essentially a
hash value), the array is then ordered by
these keys. A significant benefit here is
that the keys will (usually) have a ran-
dom and relatively uniform distribution
(e.g., 01, 23, 45, 67, 89). This approach
is helpful when using things like binary
trees, which benefit from having bal-
anced key distribution. This is also re-
ferred to as a hash map.

Hash DoS
As is often true, there are ways for an at-
tacker to abuse this setup. When the
hash value is calculated, it is often done
using a deterministic method (so that

the same input will always result in
the same hash value). If multiple in-

puts were processed that had the
same hash value, most program-

ming languages and applica-
tions would need several sec-

onds and, in some cases,
several minutes to insert

all the values with the
same hash value [1].

Security with data structures

Make a Hash
What do all programs have in common? They store data at

some point, usually in arrays – everything from command-

line options to the input and output. But how is data actually

stored by the program? Kurt explains. By Kurt Seifried

Kurt Seifried is an Information Security
Consultant specializing in Linux and net-
works since 1996. He often wonders how
it is that technology works on a large
scale but often fails on a small scale.

 Kurt SeifrieD

64

Features
Security Lessons: Hash Maps

March 2013 Issue 148 lInux-MagazIne.coM | lInuxproMagazIne.coM

which it is utterly trivial to find values
that will cause collisions. Using pre-com-
puted folder values, it is reported that
creating several thousand folders (an op-
eration that normally takes a tenth of a
second or so) will take several seconds
before timing out if you use malicious
values [4].

SipHash
So, you need a hash that is cryptographi-
cally secure, which is basically a fancy
way of saying that it will be highly resis-
tant to attacks. Additionally, you’ll want
speed, and you’ll want to be able to hash
short values like a, aaaa, and aaab in a
way that prevents highly similar inputs
from having similar outputs. The output
also needs to be relatively short so that
you can use it in applications, such as
memory arrays, or embed it within net-
work packets. Finally, the hash needs to
support the use of a secret key or value
to permute the hash values so that at-
tackers cannot pre-compute hash values
to use in attacks. You also want it to be
simple to implement.

SipHash [5], for example, was released
on June 20, 2012, and eight days later it
had 18 implementations, including Ruby,
C, C#, Java, JavaScript, PHP; now, there
is virtually complete coverage for all
major languages.

Alternatives –
Bloom filters
As a rule, arrays are the data structure
used when you have to store data for
later lookups, but depending on your
exact use case, you might have other op-
tions. If, for example, you don’t actually
need to look up the data but just need to
know whether it exists, you might be
able to use a Bloom filter. Through the
magic of hashing and math, you can cre-
ate a memory-efficient data structure
that will store a set of data. The space
you save comes at the cost of having
possible false positives; however, the
Bloom filter will never report something
as being in the set when it is not. De-
pending on your tolerance, you can
allow a higher number of false positives,
which would allow you to save even
more memory [6].

Alternatives – Binary trees
Depending on your usage patterns, an-
other option could be some form of bi-

nary tree. Typically, binary trees are fast,
especially in memory, but they can be
slow when loaded from the filesystem.
A number of binary tree systems use
various tricks like balancing the trees to
order data efficiently only when the data
is flushed to disk. In memory, having
the data out of order won’t matter
much, but on disk, this will introduce
significantly more delays. Red-black
trees can, for example, offer worst-case
guarantees, so although they might be
slow, they will never become unusably
slow or non-responsive – a critical fea-
ture for many operations.

expiring Data
One of the most efficient ways to store
data is to get rid of the data you don’t
need. Of course, you have to know
which data you no longer need, and that
can be tricky sometimes. Adding a time-
stamp field to the array entry for when
the data was created or last used can
allow you to search for and delete data
that is old and unneeded.

Conclusion
The reality is that we live in a con-
nected world and the main value of
many programs is their ability to share,
process, and distribute data. However,
many people out there love to exploit
and abuse these programs. So, it seems
clear at this point that virtually all hash
operations need to use cryptographi-
cally secure options for everything from
secure encryption programs to the ar-
rays that hold phone numbers. Better
safe than sorry. nnn

available at
your newsstand!

300+ of the best
basH Commands!

n Create your own
Bash Scripts

n Configure partitions,
permissions, devices,
and user accounts

n Manage and
troubleshoot
processes

Or Order Online at:
shOp.linuxnewmedia.cOm

(select special editiOns)

3rd edition

New and improved!

LNM_special_Shellhandbook_1-3v.indd 1 7/16/12 12:42:35 PM

[1] Hash DoS: http:// www. ocert. org/
 advisories/ ocert‑2011‑003. html

[2] Murmur Hash: https:// sites. google.
 com/ site/ murmurhash/

[3] Hash-Flooding DoS Reloaded: At-
tacks and Defenses:
http:// events. ccc. de/ congress/ 2012/
 Fahrplan/ events/ 5152. en. html

[4] Security Problem Discovered in Btrfs
File-System:
http:// www. phoronix. com/ scan. php?
 page=news_item& px=MTI1MjU

[5] SipHash: https:// 131002. net/ siphash/

[6] Why Bloom filters work the way they
do: http:// www. michaelnielsen. org/
 ddi/ why‑bloom‑filters‑work‑the‑way‑
they‑do/

 info

lInux-MagazIne.coM | lInuxproMagazIne.coM

