
R
ecently, I was working with an “upstream” developer
of Linux kernel device drivers. This particular devel-
oper was working in the media subsystem section of
the kernel, where there are a LOT of device drivers be-

cause the media subsystem is either the second or third largest
driver subsystem in the kernel. The developer reviewed about
3,000 patches per kernel cycle in addition to doing about 100
patches per kernel cycle himself. He was not complaining, just
letting me know the work load.

In the midst of our discussions, he lamented:

Not actually knowing why Academia doesn’t contribute
upstream, I would guess that writing a new driver is proba-
bly a too short project for them, as students are supposed to
work on a 6-month to 2-year window, while writing a new
driver takes only a few days with the proper datasheets
and/​or a reference driver and a knowledgeable developer.

Perhaps the issue has not been proposed to academia in the
correct way. While such a project might not be considered suit-
able for a Master’s or PhD-level course, exactly this level of
coding would be appropriate for an undergraduate course in
operating systems design, or a course in device driver writing
for a technical college or technical high school.

The University of New Hampshire once
set up an entire laboratory for testing

Ethernet drivers and boards for effi-
ciency and proper support of the
Ethernet standard. The university
was sent boards by Ethernet com-
panies to test, and the university
was recognized for its work. The
university hired undergraduate

students to test and write the de-
vice drivers, and grades were

given for the work.Few
people get jobs design-

ing an entire OS for a
new target, but

there are consid-
erable job open-

ings for tal-
ented device
driver writ-
ers, partic-
ularly for
embedded
systems.

With the professor acting as a guide and first reviewer, you
might get seven or eight device drivers from each class, while
the class would learn several useful things, such as:
•	 How to write a device driver
•	 How to test
•	 How to update another person’s code so it looks like one au-

thor wrote it
•	 How to collaborate
•	 How to review another programmer’s work
This class could cover media devices as well as other USB de-
vices. With USB 3.0 becoming more and more popular on
motherboards (and with a revision of the standard supporting a
theoretical 10Gbps due out in 2014), I foresee a lot of devices,
including high-speed SSD and even multiple video screens,
being USB instead of soldered onto the motherboard or in some
type of motherboard slot.

Another reason for university classes to do these types of
projects is that universities typically have the equipment to do
the testing. My friend, the media subsystem developer, did not
have a certain piece of equipment that could tell him how well
his device driver was performing because it was too expensive
for him to purchase, so he had to “guess” at the performance,
given how other software used his driver. Universities often
have test equipment on hand as part of their laboratories or
will develop new equipment to test what needs to be tested.

When I was taking (and even teaching) operating systems
design many years ago, hardware was still very expensive, and
source code for the operating system or sample device drivers
for “real” operating systems was still out of reach of smaller
universities, colleges, and technical high schools. Therefore, we
tended to work on “toy” operating systems created for aca-
demic use. We knew that the time and effort we put into those
classes was of limited use in the real world. If we had known
that we might be able to get jobs after graduation aided by the
knowledge we had of a commercial operating system, the class
would have been that much more interesting.

Fortunately, times have changed. Now, with hardware such
as the Raspberry Pi and some inexpensive devices, a student
could write a nice device driver for a USB media subsystem de-
vice for GNU/​Linux and watch the code work its way “up-
stream,” getting feedback not only from their professor, but
also from experienced FOSS programmers. Imagine the pride
that students could experience when their friends used a device
driver they had written, and imagine the nice entry it would
make in a portfolio of work to show to a potential employer.

It would also be nice (and drive the concept) if the school
doing the work actually received credit for it … but that is the
same with all FOSS. nnn

Teaching how to write device drivers

maddog considers the benefits of teaching students how to write device drivers.

By Jon “maddog” Hall

 Driving Passion

Community Notebook
Doghouse: Device Drivers

90 June 2013	 Issue 151	 linux-magazine.com | Linuxpromagazine.com	

