
I
am working on a long-term project for Linaro, the associa-
tion of ARM vendors that are working to make GNU/​Linux
work well on ARM processors. The project requires me to
delve into assembly and machine language code – some-

thing I have not done for more than 20 years. I would like to
tell you why I am so excited about this particular piece of work.

In 1969, I was an electrical engineering student at Drexel In-
stitute of Technology (now called Drexel University) in Phila-
delphia. Drexel was a cooperative engineering school and I was
lucky to get a “coop” assignment at the Western Electric Com-
pany in Baltimore.

While at Western Electric, I enrolled in a correspondence
course called “How to Program the IBM 1130 Computer in FOR-
TRAN.” The course consisted of a book that described how to
punch cards, write a FORTRAN program, and run it on the IBM
1130, which we had in the engineering department. That ma-
chine was so small and slow by today’s standards that it only
ran one job at a time, and you linked the device drivers into
your program not the operating system. In effect, you “booted”
your program to run it. This correspondence course was my
first exposure to software.

When I returned to Drexel, I found the electrical engineering
department had two Digital PDP-8 computers, along with two
ASR-33 teletypes (paper output with a keyboard for input), that
used paper tape for input and output for “storage.” These ma-
chines punched paper tape at the rate of 10 bytes per second

and per linear inch.
Although the computers did have a

simple “FORTRAN-like” language
called FOCAL, for me, the main
method of programming them was as-
sembler language. At that time, Drexel
offered no course in assembler lan-
guage, so I learned how to program by
reading books and practicing. I was
given two paperback books from Digital

by my Digital representative who
(for some reason) found me

interesting. One book
was about the archi-

tecture of the PDP-8,
and the other was

on binary arith-
metic and how
to program in
assembler.

The PDP-8 was a very simple machine. It was designed be-
fore nano-electronics, and today the architecture would be
called a “Reduced Instruction Set Computer” – very reduced.
Every instruction was 12 bits long; the machine only had one
general-purpose register (a 12-bit accumulator that also did all
I/​O) and was so simple it could only add. Subtraction was done
by taking the two’s complement of the subtrahend and adding
it to the minuend. Although this machine was primitive by to-
day’s standards, it was a machine that I could touch and really
get to understand, as opposed to the IBM and Burroughs main-
frames, which were kept behind locked doors.

When I graduated a few years later, I won my first profes-
sional job because I had taught myself to program in assembler.
My prospective employer asked me if I could program in IBM
360 assembler. My response was “Do you have a book?” I pro-
grammed in assembler for Aetna Life and Casualty during a
four-year career. Later I went to teach at Hartford State Techni-
cal College. I had to teach myself PDP-11 assembler (a really
nice CISC architecture), so I could teach it to my students.

My knowledge of assembler languages was also useful in
building and programming early microcomputers, which were
just coming out at that time, as well as in teaching operating
systems courses and (my favorite course) compiler design. The
knowledge of machine architecture and languages helped me
explain to students the fine details of how the machine actually
worked.

While working for Bell Laboratories, I taught courses at night
for Merrimack College in Massachusetts. I tried to schedule a
class on assembler language for some students and ran into
some opposition from the Department Head of Computer Sci-
ence in the day school. Finally, I went to speak with him, and
he asked me why I thought the assembler course was neces-
sary, because no one he knew programmed in assembler.

I told him about all the times that knowing assembler, or any
machine language, had helped me debug errors that the com-
piler made or helped me write programs in high-level lan-
guages that executed faster because I knew how the object
code might be generated. I also pointed out that, when I taught
compiler theory or operating system design, a knowledge of
machine code helped the class understand “reentrancy and re-
cursion in high-level languages.” I did not notice how the De-
partment Head’s eyes widened when I said those words.

After a few more minutes, he agreed to offer the course, and
as I was leaving he asked me to make sure I invited him to the
discussion of reentrancy and recursion. “I never really under-
stood how those worked,” he said. nnn

“maddog” explains why a knowledge of assembler, or other

machine language, can be very useful. By Jon “maddog” Hall

In Due Course
Learning assembler

Community Notebook
Doghouse: Assembler

94 August 2013	 Issue 153	 linux-magazine.com | Linuxpromagazine.com	

