The ARM architecture – yesterday, today, and tomorrow

In many ways, what commentators are calling the mobile revolution is also the ARM revolution. The versatile, inexpensive, and energy-efficient ARM architecture is suddenly in the foreground as Linux and other operating systems move from the clunky desktop systems of the past to tiny and agile mobile devices. Even gigantic high-performance systems, as well as other enterprise-grade servers, are including ARM processors to make the most of the low cost, low energy, and low heat.

What is ARM, and how did it get here? How is it different from the x86 chips that so many associate with personal computing? In this article, we take a close look at the ARM architecture, provide a glimpse at why it is so attractive to hardware vendors, and describe some new ARM innovations that might figure prominently in the next generation of computers.

A Little History

The beginnings of the ARM architecture date back to the early 1980s, when the British computer manufacturer Acorn was searching for a new processor for its computer. The 6502 processor used previously was not powerful enough, and alternative architectures seemed inappropriate.

[...]

Use Express-Checkout link below to read the full article (PDF).

Buy this article as PDF

Express-Checkout as PDF
Price $2.95
(incl. VAT)

Buy Linux Magazine

SINGLE ISSUES
 
SUBSCRIPTIONS
 
TABLET & SMARTPHONE APPS
Get it on Google Play

US / Canada

Get it on Google Play

UK / Australia

Related content

  • Canonical Ports Ubuntu on ARM Platform

    End of last week ARM Ltd and Canonical Ltd announced that they would port Linux to the ARMv7 processor architecture. If all goes well, the two collaborating firms should provide further hardware manufacturers with the basis to develop new, energy-efficient mobile devices, especially for the popular netbooks and so-called hybrid computers.

  • Doghouse – RISC vs. CISC

    Crank the compilers and turn up the system clock; maddog explains the basic differences between RISC and CISC architectures.

  • Embedded Rust

    Rust, a potential successor to C/C++, claims to solve some memory safety issues while maintaining high performance. We look at Rust on embedded systems, where memory safety, concurrency, and security are equally important.

  • Xeon 7300: Intel's First Quadruple-Core Processor Platform

    The Xeon 7300er processor family is Intel's first quad-core processor for multiple processor servers. The energy efficiency of the new processors differs depending on the speed with 2.93 GHz requiring 130 Watts compared to 50 Watts for a 1.86 GHz version.

  • RISC-V

    The open source RISC-V processor architecture is poised to shake up the processor industry. Thanks to the Qemu emulator, you can get to know the RISC-V without waiting for affordable hardware.

comments powered by Disqus
Subscribe to our Linux Newsletters
Find Linux and Open Source Jobs
Subscribe to our ADMIN Newsletters

Support Our Work

Linux Magazine content is made possible with support from readers like you. Please consider contributing when you’ve found an article to be beneficial.

Learn More

News