I Know That Face
Not Perfect, but Not Bad
But face_recognition
can do more than find faces in pictures; it can identify the person to whom the face belongs. To compare two faces found in different images, the algorithm again cannot simply match raw images pixel by pixel. Rather, it has to normalize, equalize, and then extract a series of features.
A person might pay attention to the size of the nose, the color of the eyes, the forehead height, or the thickness of the eyebrows. The facial recognition algorithm, on the other hand, learns which features produce the most hits and the least false positives with millions of test images in the learning phase, based on matching and mismatching images. Afterward, however, the algorithm only consists of meaningless columns of numbers. As is usual in machine learning, no one knows which particular feature the algorithm uses to arrive at a particular decision.
Figure 5 shows the key data of the reference face extracted from Figure 1 provided by the face_encodings()
function. The facial comparison algorithm in turn takes the key data from each recognized face and compares them to the reference. If two records approximately match, it is probably the same person.
With this tool, a script can extract a face from the reference image and compare the result with faces on other images. As a practical application, I have whipped up the script in Listing 3, which searches my own photo collection (containing an impressive 36,525 images) for images showing the person on the reference image – me.
The file hierarchy is based on what I call the shoe box principle, meaning new photos just get dumped into there without any extra archiving or indexing. Whittling down the collection by hand would be very labor intensive. But I can certainly show an artificial intelligence (AI) system the photo from Figure 1 and rattle through the image collection to see if the face in Figure 1 can also be detected on other photos.
Unpacking the Whole Collection
To do this, Listing 2 first defines an iterator for all JPEG photos below the /photos
directory on my hard disk. It skips other formats and all entries in .cache
directories where one of my image processing programs stores the thumbnails that I want to leave out of the face analysis action. The photos()
iterator as of line 5 accepts the start directory and then runs through all the files it finds; the yield()
operator returns them in line 12 bit by bit, when the main program asks for more.
Listing 2
photos.py
01 #!/usr/bin/python3 02 import os 03 import re 04 05 def photos(dir): 06 for root, dirs, files in os.walk(dir): 07 if re.search(r'\.cache', root): 08 continue 09 for file in files: 10 if re.search(r'jpg$', file, 11 re.IGNORECASE): 12 yield(os.path.join(root, file)) 13 14 # testing 15 if __name__ == "__main__": 16 for photo in photos("/photos"): 17 print(photo)
Listing 3
face-search.py
01 #!/usr/bin/python3 02 import face_recognition as fr 03 import dbm 04 import re 05 from photos import photos 06 import sys 07 08 try: 09 _, ref_img_name, search_path = sys.argv 10 except ValueError as e: 11 raise SystemExit("usage: " + 12 sys.argv[0] + " ref_img search_path") 13 14 cache = dbm.open('cache', 'c') 15 16 ref_img = fr.load_image_file(ref_img_name) 17 ref_face = fr.face_encodings(ref_img)[0] 18 19 for photo in photos(search_path): 20 if photo in cache: 21 print(photo + " already seen") 22 continue 23 cache[photo] = "1" 24 25 try: 26 img = fr.load_image_file(photo) 27 except: 28 continue 29 30 for face in fr.face_encodings(img): 31 hits = \ 32 fr.compare_faces([ref_face], face) 33 if any(hit for hit in hits): 34 print(photo)
In the main image finder in Listing 3, lines 8 to 12 check whether the user has specified both a reference image and the top search path for the photos at the command line. The first element of sys.argv
contains the script name, which gets discarded in the underscore variable (_
); then, line 16 loads the reference image. The next line extracts the reference face, shown under index
of the returned coordinate list because the reference image only has one face in it.
Later, line 19 runs through all JPEG files found by photos.py
; for each one, the script calls the compare_faces()
function from the face_recognition
project with the face values previously obtained from the reference image. The
any(hit for hit in hits)
construct checks whether one of the faces detected on the current image matches the one on the reference image. If this happens, one of the elements in the hits
list has a value of True
, and line 34 prints the image file's path to standard output, where the surprised user can pick it up and inspect it with a photo viewer.
Listing 4 shows how the script calls into the Docker container and displays its output. I was amazed by the photos it dug up, some from ancient history, unveiling a more youthful edition of yours truly. Oh, the good old days!
Listing 4
run.sh
1 $ docker run -v /photos:/photos -v `pwd`:/build -it face bash -c "cd /build; python3 face-search.py me.jpg /photos" 2 /photos/2001/12/29/13:55:38.jpg 3 /photos/2001/07/22/11:47:27.jpg 4 /photos/2001/07/22/10:35:33.jpg 5 /photos/2001/07/22/15:43:23.jpg 6 [...]
So Many Nerds
However, the process is not perfect and occasionally makes downright laughable mistakes. For example, my collection had some pictures I took at open source conferences showing hundreds of young nerds, and the algorithm totally thought that one of them was me, which is impossible because I actually took the photos.
Since AI wastes lots of computing time, rummaging through the image tree and recognizing familiar faces takes a long time. If the script bombs out somewhere due to an error, it would be unfortunate to have to start over. Therefore, Listing 3 remembers results from all processed images in a persistent file named cache
. Python closes it conveniently when the program terminates, so the script only has to open it at the beginning with the c
flag (to create it for the first time if necessary). The script can subsequently access the cache
dictionary to see whether it already contains the name of the file under investigation and skip it if so.
« Previous 1 2 3 Next »
Buy this article as PDF
(incl. VAT)
Buy Linux Magazine
Subscribe to our Linux Newsletters
Find Linux and Open Source Jobs
Subscribe to our ADMIN Newsletters
Support Our Work
Linux Magazine content is made possible with support from readers like you. Please consider contributing when you’ve found an article to be beneficial.
News
-
Rhino Linux Announces Latest "Quick Update"
If you prefer your Linux distribution to be of the rolling type, Rhino Linux delivers a beautiful and reliable experience.
-
Plasma Desktop Will Soon Ask for Donations
The next iteration of Plasma has reached the soft feature freeze for the 6.2 version and includes a feature that could be divisive.
-
Linux Market Share Hits New High
For the first time, the Linux market share has reached a new high for desktops, and the trend looks like it will continue.
-
LibreOffice 24.8 Delivers New Features
LibreOffice is often considered the de facto standard office suite for the Linux operating system.
-
Deepin 23 Offers Wayland Support and New AI Tool
Deepin has been considered one of the most beautiful desktop operating systems for a long time and the arrival of version 23 has bolstered that reputation.
-
CachyOS Adds Support for System76's COSMIC Desktop
The August 2024 release of CachyOS includes support for the COSMIC desktop as well as some important bits for video.
-
Linux Foundation Adopts OMI to Foster Ethical LLMs
The Open Model Initiative hopes to create community LLMs that rival proprietary models but avoid restrictive licensing that limits usage.
-
Ubuntu 24.10 to Include the Latest Linux Kernel
Ubuntu users have grown accustomed to their favorite distribution shipping with a kernel that's not quite as up-to-date as other distros but that changes with 24.10.
-
Plasma Desktop 6.1.4 Release Includes Improvements and Bug Fixes
The latest release from the KDE team improves the KWin window and composite managers and plenty of fixes.
-
Manjaro Team Tests Immutable Version of its Arch-Based Distribution
If you're a fan of immutable operating systems, you'll be thrilled to know that the Manjaro team is working on an immutable spin that is now available for testing.